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ABSTRACT GRAPH MACHINE: MODELING ORDERINGS IN ASYNCHRONOUS
DISTRIBUTED-MEMORY PARALLEL GRAPH ALGORITHMS

Graphs are ubiquitous data structures. Processing large graphs require distributed-memory

parallel graph algorithms. Many existing distributed-memory parallel graph algorithms

are extended from parallel graph algorithms developed for shared-memory platforms.

These extensions show poor performance in distributed execution, due to factors such

as frequent synchronizations, increased irregular memory access overhead influenced by

operations like subgraph computations. One way to mitigate such overheads is to adopt

purely asynchronous algorithms, yet they show poor performance due to a high amount

of work generated.

This thesis presents Abstract Graph Machine (AGM), a model that can control the

amount of synchronization needed for a distributed-memory parallel graph algorithm.

AGM represents an algorithm with a function that encapsulates logic and a strict weak or-

dering relation. The strict weak ordering relation separates work into equivalence classes;

work units that are not comparable are inserted into the same equivalence class and can

be executed in parallel. Work units that are comparable are separated into different equiv-

alence classes and processing equivalence classes are sequenced according to the induced

ordering. The model is further extended (Extended-AGM) to specify orderings at lower

spatial levels in a memory hierarchy. The thesis shows that with the AGM and Extended-

AGM (EAGM) models, one can derive families of graph algorithms by specifying different

orderings while keeping the same processing logic.

Both AGM and EAGM models are implemented on top of a Message Passing Inter-

face (MPI) based runtime. The thesis discusses challenges faced when mapping AGM and

EAGM models to an implementation and how we overcame them. We compare the per-

formance of AGM framework graph applications with the performance of popular graph

processing frameworks such as Parallel Boost Graph Library, GraphLab-PowerGraph, and



www.manaraa.com

CombBLAS. Further, thesis analyzes the performance of different orderings on power-

law graphs, uniform degree distribution graphs, low diameter graphs and high diameter

graphs.

Andrew Lumsdaine, Ph.D.

Esfandiar Haghverdi, Ph.D.

Haixu Tang, Ph.D.

Predrag Radivojac, Ph.D.

Alex Pothen, Ph.D.



www.manaraa.com

Contents

List of Figures xiv

List of Acronyms xx

Chapter 1. Introduction 1

1.1. Background 3

Chapter 2. Related Work 14

2.1. Graph Processing Frameworks 15

2.2. Parallel Graph Algorithms 16

2.3. Spatial Characteristics 26

Chapter 3. Abstract Graph Machine 32

3.1. Model Primitives 33

3.2. Termination & Correctness 40

3.3. Breadth First Search in Abstract Graph Machine (AGM) 40

3.4. Summary 42

Chapter 4. Extended Abstract Graph Machine 44

4.1. Memory Hierarchy 44

4.2. Data Distribution 47

4.3. Spatial Ordering 48

4.4. Summary 49

Chapter 5. Families of Graph Algorithms: SSSP Case Study 51

x



www.manaraa.com

5.1. Introduction 51

5.2. SSSP Algorithms in AGM 53

5.3. Single-Source Shortest Paths (SSSP) EAGMs 57

5.4. Experiments & Results 59

5.5. Summary 63

Chapter 6. Priority Based Connected Components 64

6.1. The Problem 64

6.2. The Asynchronous Algorithm 65

6.3. Ordering 68

6.4. Experiments & Results 70

6.5. Connected Components in AGM 71

6.6. Summary 73

Chapter 7. Luby’s Maximal Independent Set 74

7.1. Introduction 74

7.2. Luby’s Algorithms 75

7.3. Distributed Memory Parallel Luby Algorithms 78

7.4. Experiments & Results 86

7.5. Summary 90

Chapter 8. FIX MIS 92

8.1. Introduction 93

8.2. FIX Algorithm 95

8.3. Ordering in FIX 101

8.4. Implementation & Experiments 110

8.5. Results 111

8.6. Maximal Independent Set (MIS) in AGM 116

8.7. Summary 119

Chapter 9. Orderings in Triangle Counting 120

xi



www.manaraa.com

9.1. Introduction 121

9.2. Triangle Counting 123

9.3. Distributed, Shared-Memory Triangle Counting 125

9.4. Blocking and Grouping Vertices 129

9.5. Degree based Partitioning 138

9.6. Results 140

9.7. Summary 147

Chapter 10. Runtime API for AGM 149

10.1. The Runtime 149

10.2. Summary 162

Chapter 11. AGM Graph Processing Framework 163

11.1. Implementation of AGM Concepts 163

11.2. Processing Function Placement 164

11.3. Split Order Processing 169

11.4. Work Statistics 172

11.5. Temporal Ordering 174

11.6. Data Structure for Equivalence Class 181

11.7. AGM Framework Usage 185

11.8. Summary 186

Chapter 12. EAGM Graph Processing Framework 187

12.1. Spatial Ordering Implementation 191

12.2. Extended Abstract Graph Machine (EAGM) Framework Usage 196

12.3. Optimizations 197

12.4. More Usecases 199

12.5. Summary 201

Chapter 13. Breadth First Search 202

13.1. Pre-order Breadth First Search (BFS) 202

xii



www.manaraa.com

13.2. Post-order BFS 203

13.3. Split-order BFS 203

13.4. Orderings 204

13.5. Experimental Evaluations 205

Chapter 14. Single Source Shortest Paths 212

14.1. Pre-order SSSP 212

14.2. Post-order SSSP 214

14.3. Split-order SSSP 214

14.4. Orderings 215

14.5. Experimental Evaluations 216

Chapter 15. Connected Components 222

15.1. Pre-order Connected Components 222

15.2. Post-order Connected Components 224

15.3. Split-order Connected Components 225

15.4. Orderings 226

15.5. Experimental Evaluations 226

Chapter 16. Maximal Independent Set 231

16.1. Pre-order Maximal Independent Set 231

16.2. Post-order Maximal Independent Set 233

16.3. Split-order Maximal Independent Set 233

16.4. Orderings 234

16.5. Experimental Evaluations 236

Chapter 17. Conclusion 240

Bibliography 244

Curriculum Vitae

xiii



www.manaraa.com

List of Figures

1.1 Graph primitives. 3

1.2 Comparison of communication patterns in a regular application and a graph

application. 4

1.3 Shared-Memory Model 5

1.4 Parallel execution pattern of a shared-memory parallel graph algorithm 7

1.5 Bulk Synchronous Parallel Execution 8

1.6 Weak scaling execution times for Shiloach-Vishkin Connected Components with

RMAT-1 graph inputs. After 16 cores execution is distributed. 10

1.7 Tree hooking and double pointer jumping in Shiloach-Vishkin (SV) algorithm. 11

1.8 Weak scaling execution times for Luby’s B MIS algorithm with RMAT-1 graph

input. (After 16 cores execution is distributed.) 12

3.1 An overview of the Abstract Graph Machine 32

3.2 Directed Acyclic Graph (DAG)s created during an AGM algorithm execution.

Sources are elements in the initial WorkItems. 36

3.3 Partitioning WorkItems into equivalence classes. 37

3.4 AGM executing equivalence classes generated in Figure 3.3. 39

3.5 Summary of AGMs for BFS algorithms. 42

4.1 Spatial hierarchies of three different systems. 44

4.2 Three different EAGMs. 46

xiv



www.manaraa.com

4.3 EAGM Spatial Hierarchy. At the global level workitems are ordered according to

<∆ and at process level and thread level there is no ordering, but at the numa

level workitems are ordered according to Dijkstra’s relation. 47

4.4 Thread ordered, NUMA ordered and Process ordered EAGMs for ∆-stepping,

K-Level Asynchronous (KLA) and Chaotic AGMs. 50

5.1 Summary of AGMs for SSSP algorithms. 57

5.2 Timing results of ∆-stepping. Shaded region indicates single node runs. 59

5.3 Timing results of KLA. Shaded region indicates single node runs. 60

5.4 Timing results of the Chaotic EAGM. Shaded region indicates 1-node runs. 61

6.1 Initial step of the algorithm. Numbers depict the value of component state for

each vertex. 66

6.2 Algorithm step 2. 66

6.3 Algorithm step 3. 66

6.4 At the termination of the algorithm. 66

6.5 Connected Components (CC) Algorithms execution time for RMAT-1 graphs. 72

6.6 CC Algorithms execution time for RMAT-2 graphs. 72

7.1 The gray nodes show a maximal independent set of this graph. 75

7.2 Weak scaling results of MIS algorithms for RMAT graphs, including FilteredMIS.

The shaded area shows the shared memory execution. 88

7.3 Strong scaling results of MIS algorithms for RMAT-1 and RMAT-2, Scale 25

graph inputs. Shaded region shows the shared memory execution. 90

8.1 The gray nodes show a maximal independent set of this graph. 93

8.2 Successors and predecessors of a vertex. 96

8.3 The virtual DAG created based on predecessors and successors. 98

8.4 DAGs created by FIX algorithm execution for the graph input in 8.1. 102

xv



www.manaraa.com

8.5 How DAG is executed in FIX-Bucket ordering. 103

8.6 An overview of the FIX-Bucket algorithm. 104

8.7 FIX* & Luby algorithms weak scaling results for RMAT-1 and RMAT-2 graphs.

Shaded region shows the shared memory execution. 112

8.8 FIX* & CombBLAS FilteredMIS algorithms, weak scaling results for RMAT-1

and RMAT-2 graphs. Shaded region shows the shared memory execution. 114

8.9 Strong scaling results of FIX* algorithms and vertex centric Luby’s algorithms 115

8.10 Strong scaling results of FIX* algorithms and vertex centric Luby’s algorithms. 116

9.1 Set intersection in predecessor, successor’s predecessor (PSP) and successor,

successor’s successor (SSS) algorithms. 124

9.2 Separating successors and predecessors in CSR structure. 127

9.3 Number of comparisons performed in set intersection (left axis), and maximum

vertex degree and number of successors (right axis) in each thread on

LiveJournal social network graph with SSS triangle counting algorithm. 128

9.4 Every thread processes an open wedge 130

9.5 Blocking vertices in sets. 130

9.6 Number of comparisons performed in set intersection by each shared memory

parallel thread, on LiveJournal social network graph with SS triangle counting

algorithm. set1 block size = set2 block size = 100 135

9.7 Block example. 136

9.8 Block aggregation for four destination ranks. Threads add blocks to different

destination buffers. 137

9.9 An example DAG and predecessors and successors counts. 140

9.10 1D block distribution and 1D cyclic distribution. “Ni” is rank id. 142

9.11 Total set comparisons performed on ranks for predecessor, predecessor’s

predecessor (PPP) algorithm with block and cyclic distributions, Opt-PPP

xvi



www.manaraa.com

algorithm with cyclic distribution. Input graph : RMAT-1, Scale 24. Threads per

rank is 16. 143

9.12 Optimized and non-optimized triangle counting algorithms weak scaling

results for RMAT-1 and RMAT-2 graphs. Shaded region shows the shared

memory execution. 144

9.13 Strong scaling results. 145

9.14 Comparison with PowerGraph-GraphLab. 146

10.1 Layered design of the AGM framework on top of a runtime. 149

10.2 Comparison of different 1-D graph data distributions. 151

10.3 Node N0 doing message aggregation for nodes N1, N2, N3. The aggregation

buffers are concurrently modified. 153

10.4 Every thread performs sending and receiving workitems and also executes

processing functions. 154

10.5 Only two threads perform sending and receiving workitems and other threads

execute the processing function. 155

10.6 There are dedicated threads that perform sending and other dedicated threads

to perform receiving. 155

10.7 The spatial memory division. 156

10.8 Pinning threads to cores to achieve Non-Uniform Memory Access (NUMA)

spatial locality. 157

10.9 Synchronization at NUMA spatial locality. 160

11.1 Local data structure in different ranks. 165

11.3 An example graph 166

11.4 Initial WorkItems in pre-order execution. 167

11.5 Initial WorkItems in post-order execution. 167

xvii



www.manaraa.com

11.6 Separating processing into πsu and πgen. 169

11.7 State update and new work generation processing functions in two ranks. Four

threads per rank. 171

11.8 Data structure that holds workitems. Each node has a representative workitem

and an append buffer. 175

11.9 The workitem generation combinations. 177

11.10 The life cycle of a workitem and how termination counts are modified. 177

11.11 Processing of a single class. 179

11.12 Partition scheme functionality. 184

11.13 Partition scheme functionality: avoiding in-node load imbalance. 184

11.14 AGM execution of ∆-Stepping algorithm. 186

12.1 Spatial memory hierarchy. 187

12.2 Global ordering ∆-Stepping SSSP algorithm execution. 188

12.3 Globally asynchronous, but process level synchronous. 189

12.4 Spatial & Temporal ordering execution. 190

12.5 Execution of ordering <ch→<∆(5)→<ch→<ch. 192

12.6 Execution of ordering <ch→<∆(5)→<level→<dj. 192

12.7 The data structure that stores spatial and temporal workitems. 193

12.8 An example of optimizing spatial orderings. 197

12.9 An example of optimizing spatial orderings. 198

12.10 An example of optimizing spatial orderings. 199

12.11 Complete asynchronous algorithm. 200

12.12 Globally asynchronous, but process and numa ordered execution. 200

13.1 A comparison of pre-order, post-order and split-order execution configurations

for BFS. 206

xviii



www.manaraa.com

13.2 Weak scaling results for BFS orderings. 209

13.3 Strong scaling results for BFS orderings. Plots show the relative speed-up. The

fastest sequential algorithm is shown on the plot with the timing. 210

14.1 A comparison of pre-order, post-order and split-order execution configurations

for SSSP. 216

14.2 Weak scaling results for SSSP orderings and a comparison with other graph

processing systems. 218

14.3 Weak scaling results for SSSP orderings for experiments ran on a architecture

with fewer nodes. 220

14.4 Strong scaling results for SSSP orderings. Plots show the relative speed-up. The

fastest sequential algorithm is shown on the plot with the timing. 221

15.1 A comparison of pre-order, post-order and split-order execution configurations

for CC. 227

15.2 Weak scaling results for CC orderings. 228

15.3 Weak scaling result comparison for CC. 229

15.4 Strong scaling results for CC orderings. Plots show the relative speed-up. The

fastest sequential algorithm is shown on the plot with the timing. 230

16.1 A comparison of pre-order, post-order and split-order execution configurations

for MIS. 236

16.2 Weak scaling results for MIS orderings. 237

16.3 Weak scaling result comparison for MIS orderings. 238

16.4 Strong scaling results for MIS orderings. Plots show the relative speed-up. The

fastest sequential algorithm is shown on the plot with the timing. 239

xix



www.manaraa.com

List of Acronyms

BFS: Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

BSP: Bulk Synchronous Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CAS: Compare And Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

GAS: Global Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

MPI: Message Passing Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Parallel BGL: Parallel Boost Graph Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Parallel BGLv2: Parallel Boost Graph Library, version 2 . . . . . . . . . . . . . . . . . . . . . . . . 236

PGAS: Partitioned Global Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

PRAM: Parallel Random Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SPMD: Single Program, Multiple Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

SSSP: Single-Source Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

SCC: Strongly Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SV: Shiloach-Vishkin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

MIS: Maximal Independent Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

AGM: Abstract Graph Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

xx



www.manaraa.com

EAGM: Extended Abstract Graph Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

CC: Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

MST: Minimum Spanning Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

St: statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

BFS: Breadth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

KLA: K-Level Asynchronous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

DCSCC: Divide & Conquer Strongly Connected Components . . . . . . . . . . . . . . . . . . . 25

DFS: Depth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

PGAS: Partitioned Global Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

DAG: Directed Acyclic Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

GAS: Gather-Apply-Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

NUMA: Non-Uniform Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

API: Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

STL: Standard Template Library(C++ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

BST: Binary Search Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

CSR: compressed sparse row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

PSP: predecessor, successor’s predecessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

SPS: successor, predecessor’s successor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

SSS: successor, successor’s successor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

xxi



www.manaraa.com

PPP: predecessor, predecessor’s predecessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

TC: Triangle Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

xxii



www.manaraa.com

1

Introduction

Graphs are the main data structures that best represent relations in data. Graph algo-

rithms are used to extract important information about the depicted data. For many graph

applications, there is more than one sequential graph algorithm. However, in most cases,

sequential graph algorithms are not directly parallelizable for efficient execution. Develop-

ing an efficient parallel graph algorithm is challenging. Designing an efficient distributed-

memory parallel graph algorithm is even harder due to the involvement of the network

and the complications that arise from the data distribution.

Most of the existing parallel graph algorithms are developed focusing shared-memory

systems and these shared-memory parallel graph algorithms do not immediately extend as

efficient distributed-memory parallel graph algorithms. In shared-memory, the algorithm

has access to the whole graph data structure and communication cost between processors

is low compared to distributed-memory. Therefore, shared-memory parallel graph algo-

rithms use techniques such as barriers, synchronous communication and sub-graph com-

putations. While these techniques have less effect on the performance of shared-memory

parallel graph algorithms, they add a significant overhead on extended distributed-memory

parallel graph algorithms. Asynchronous graph algorithms is an alternative approach that

does not have the overheads discussed above. However, asynchronous algorithms tend to

generate more work and messages compared to synchronous graph algorithms and may

result in poor performance due to low compute/communication ratios and may consume

more power. In this thesis, we use ordering to control the execution of asynchronous graph
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algorithms and hence to control the amount of work and messages generated. We present,

Abstract Graph Machine (AGM): an abstract model to represent asynchronous distributed-

memory parallel graph algorithms. Thus, we show that families of graph algorithms can

be derived by changing ordering while keeping the processing logic intact. Further, we

extend our model to explore orderings at different spatial memory levels (the extended

machine is called Extended Abstract Graph Machine (EAGM)) and show that more efficient

algorithms can be obtained by avoiding global synchronization and by applying ordering

at lower spatial levels.

The thesis presents families of distributed-memory parallel graph algorithms derived

using the AGM model for Single-Source Shortest Paths (SSSP) (Chapter 5) and shows that

they outperform some of the widely used distributed-memory parallel SSSP algorithms.

We developed, implemented and evaluated new asynchronous distributed-memory graph

algorithms for Connected Components (Chapter 6), Maximal Independent Set (Chapter 8

and Chapter 7) and Triangle Counting (Chapter 9). These new algorithms are modeled

using the AGM and EAGM to derive variations. The scalability of these algorithms and

their variations are evaluated with a number of different synthetic graph inputs and real-

world graph inputs.

In Chapter 11 and Chapter 12 we present an efficient implementation of the AGM

model and EAGM model. The AGM framework mainly takes a function that encapsulates

algorithm logic and an ordering (A strict weak ordering relation. Both inputs are specified

as C++ functors) and executes the algorithm by ordering generated work according to the

input relation. The EAGM framework takes a list of orderings specified for each spatial

level and executes the algorithm by ordering generated work according to the relations

specified for the spatial level. We experimentally evaluate the performance of the AGM

framework for a number of different orderings and for a number of different graph ap-

plications. We show that the performance of framework algorithms is competitive with

the hand-written graph algorithms and also outperforms some of the well-known graph

processing frameworks (e.g., PowerGraph-GraphLab [90], CombBLAS [20]).
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When it comes to performance, distributed-memory parallel graph algorithms are in-

separable from the underlying runtime. These runtime features are discussed in detail in

Chapter 10. Further, the performance of graph algorithms are data dependent and heavily

depend on the characteristics of the input graph. This framework allows us to execute

an algorithm with a given spatial and temporal ordering and hence we can derive algo-

rithms with different synchronization levels. For example, we can execute an algorithm as

a globally synchronous algorithm, or a globally asynchronous, but locally (process level)

synchronous algorithm etc.. We show that the best ordering choice to execute an algorithm

depends on the input and that, globally asynchronous execution generally shows better

performance for high diameter graphs and power-law graphs while globally synchronous

execution shows better performance for graphs with uniform degree distributions (e.g.,

Erdos-Renyi graphs [42]).

1.1. Background

vertex

edge

5 14

34
70

80

5 14

7034

80

Graph Directed Undirected

Weighted
Directed

Weighted
Undirected

FIGURE 1.1. Graph primitives.

1.1.1. Graph Terminology. A Graph is an ordered pair, G = (V,E) where V is a set of

vertices and E is a set of edges. An edge is a pair of vertices. When an edge has a direction

we call that graph a directed graph and when the direction of an edge is not specified, the
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graph becomes an undirected graph. By mixing some of the features we can derive different

types of graphs (See Figure 1.1). The degree of a vertex is the number adjacencies a vertex

has.

A scale-free graph is a graph whose degree distribution follows a power law. Most real-

world graphs are scale-free and those graphs have a common number of vertices with

a high degree. The diameter of a graph is the highest shortest path between any pair of

vertices.

A graph algorithm is ordered if the execution order affects the correctness of the algo-

rithm. If the execution order does not affect the correctness of the algorithm, then it is

an un-ordered algorithm. An asynchronous graph algorithm is label setting if the algorithm

writes to output state only once. If the algorithm writes more than once to the output state

before it converges, then the algorithm is label correcting.

(A) Communication pattern in a regular applica-
tion.

(B) Communication pattern in a graph applica-
tion.

FIGURE 1.2. Comparison of communication patterns in a regular applica-
tion and a graph application.

1.1.2. Irregularity. Unlike in regular applications, graph algorithms’ memory access

patterns are irregular. Regular applications distribute data in such a way that communica-

tion is necessary only to process data within boundaries. Data that do not lie on boundaries

are processed locally. For this reason, regular applications maintain a high compute com-

munication ratio. Stencil computation is an example application that processes data this

way. Figure 1.2a shows how data in one process depends on data in other processes in a

regular application (2D Stencil computation, more specifically). On the other hand, Fig-

ure 1.2b shows how the graph data in one process depends on graph data owned by other
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processes. As shown in the figure, graph algorithm data in a single process can depend

on other distributed data. Figure 1.2b assumes the graph is distributed by distributing its

vertices equally among processes. Further, data dependency in an algorithm is usually

defined by how vertices connect to each other. Therefore, it is almost impossible to come

up with a strategy to distribute graph data in such a way that communication is similar to

a regular application. Due to irregular memory access patterns, the compute/communi-

cation ratio in graph applications is lower than regular applications.

The effect of irregularity on the performance of distributed memory parallel graph

algorithms is higher than its effect on sequential graph algorithms. Irregular memory ac-

cess patterns cause performance overhead even in sequential algorithms in-terms of cache

misses, compared to sequential regular applications. Shared-memory is the first step of

distributing processing among several processors. In shared-memory, we have multiple

processors running independently and communicating via a single shared-memory. As

we discussed previously, regular application’s data can be laid over shared-memory, in

such a way, each processor processes only a set of data that is local to the processor and

does not need to share data with another processor. In irregular applications, a processor

may access any data element in shared-memory.

The second step of distributing processing is the distributed-memory. In distributed-

memory, each processor holds a local memory and processors communicate through a net-

work. When going from shared-memory to distributed-memory, a constant factor is added

to the communication cost. However, irregular applications’ communication is more fre-

quent than that of regular applications. For irregular applications that constant factor adds

a significant overhead and is no longer negligible.

Shared Memory

P1 P2 P3 P4 P5

FIGURE 1.3. Shared-Memory Model
5
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Algorithm 1 Shared-Memory Parallel Graph Algorithm

1: procedure ALGORITHM(G = (V,E))
2: while some condition do
3: for each Vertex v in V in parallel do
4: ...
5: end for
6: end while
7: end procedure

1.1.3. Shared-Memory Execution. The majority of the existing parallel graph algo-

rithms were developed for shared-memory parallel platforms and analyzed using the Par-

allel Random Access Memory (PRAM) [45] model. The PRAM model consists of a set of

individual Random Access Memory (RAM) processors, a memory local to each independent

processor (e.g., registers), and, a shared-memory (Figure 1.3). Different processors write to

and read from the shared-memory. The model assumes that reads and writes to the shared-

memory are synchronized. Each read or write is considered as a single time-step. Then, the

cost of an algorithm is expressed in terms of the number of times the algorithm reads and

writes to the shared-memory. Further, most of the algorithms designed for shared-memory

are iterative, which means that those algorithms iterate over vertices and/or edges until

they reach a particular condition (See Algorithm 1). Thus, the algorithm complexity boils

down to the total number of iterations (depth), and the number of processors needed to

complete a single iteration in parallel (breadth).

6
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De
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h

barrier 0

barrier 1

while (condition = true)

while (condition = true)

while (condition = false)

Terminate

barrier k

FIGURE 1.4. Parallel execution pattern of a shared-memory parallel graph
algorithm

An example execution of an iterative shared-memory graph algorithm is shown in

Figure 1.4. For this example, suppose every vertex keeps a state (Si) in shared-memory and

every vertex is processed in a separate parallel thread (n is the number of vertices). In an

iteration, every thread reads a state from a previous state (updated by a previous iteration)

and performs some calculation based on the algorithm logic and writes the outcome to

the shared-memory. The algorithm terminates when the condition is evaluated to true.

Between iterations, algorithm synchronizes all the processors. For this algorithm, depth

is the number of iterations algorithm needs to perform until the condition is evaluated to

true.

7
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Barrier

Communication
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pute

FIGURE 1.5. Bulk Synchronous Parallel Execution

1.1.4. Extending Shared-Memory Algorithms to Distributed-Memory. Parallel graph

algorithms designed for shared memory do not immediately extend to distributed mem-

ory. One way to extend existing shared-memory graph algorithms to distributed memory

is to use the Bulk Synchronous Parallel (BSP) [132] approach. The BSP model is regarded as

a generalization of the PRAM model, which permits the frequency of barrier synchroniza-

tion, and hence the demands on the routing network, to be controlled (See [127], Question

20 for details). The BSP model has super-steps. Each super-step consists of a local com-

putation phase, a distributed communication phase, and a global synchronization phase

(See Figure 1.5). However, when using the BSP approach to extend a graph algorithm

designed for shared-memory to a distributed setting, the algorithm needs to be restruc-

tured into compute, communication and barrier synchronization phases and may need to

introduce additional data structures too. Hence, the resulting distributed algorithm be-

haves differently from the original shared-memory algorithm both in the way it performs

computations and in the way it uses the data structures.

For example, a shared-memory graph algorithm has access to the whole graph data

structure whereas a distributed graph algorithm needs to perform communication to ac-

cess a certain part of the data in the graph (assuming the graph structure is distributed).

8
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Therefore, some of the techniques used by shared-memory algorithms create extra over-

head in extended distributed algorithms. Sub-graph computation is a such an example.

Barrier synchronizations is another example that becomes inefficient in distributed execu-

tion. In addition, some of the shared-memory parallel algorithms use techniques such as

double pointer jumping to achieve better running time (e.g., Shiloach-Vishkin (SV)). How-

ever, such methods increase the number of distributed messages. In the following, we

discuss the effect of these techniques on extended algorithms in detail.

1.1.5. Low Compute-Communication Ratio. Under a distributed runtime, time-steps

to read a remote memory can no longer be counted as one as in the PRAM model. For dis-

tributed algorithms, it is necessary to reduce the remote memory accesses. Therefore, some

of the shared-memory algorithms that have sound PRAM complexities show poor per-

formance when they are extended as distributed-memory parallel graph algorithms. For

example, SV Connected Components [123] algorithm uses techniques such as double pointer

jumping and tree hooking to reduce the PRAM complexity (PRAM complexity O(logn) with

n+ 2m processors, where n is the number of vertices and m is the number of edges). In

shared-memory, SV algorithm shows sound performance but in distributed-memory it

generates very high number of remote messages. Figure 1.6 shows the performance of SV

algorithm in distributed-memory. Within the node (i.e., when the number of cores is less

than 16) algorithm shows better performance, but as we distribute the execution (after 16

cores) algorithm execution time increases.
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FIGURE 1.6. Weak scaling execution times for Shiloach-Vishkin Connected
Components with RMAT-1 graph inputs. After 16 cores execution is dis-
tributed.

Both tree-hooking and double pointer jumping can trigger remote communication.

Tree hooking is the process of connecting two parent vertices when their children are

connected with an edge (Figure 1.7a). Double pointer jumping connects a vertex to its

grandparent (Figure 1.7b). When the graph is distributed, hooking vertices may be in two

different nodes and may need message communication to complete the operation. In dis-

tributed execution, this operation generates more messages and increases the communica-

tion and reduces the computation. A similar argument applies to double pointer jumping.

Therefore, even though these operations are efficient in shared-memory, they slow down

the algorithm when it is executed in distributed-memory.

1.1.6. Sub-Graph Computations. In the PRAM model, sub-graph computations add

a constant factor to algorithm execution time. In shared-memory, sub-graphs can be con-

structed without much overhead. However, sub-graph computations in a distributed en-

vironment are quite expensive. In a distributed setting there are two main approaches to

compute sub-graphs: 1. Create the sub-graph by filtering vertices and edges locally, or 2.

Create the local subgraph by instantiating a new local graph by adding the subset of ver-

tices and the subset of edges. The first approach does not need much memory, but it breaks

10
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(A) Tree hooking operation.
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(B) Double pointer jumping

FIGURE 1.7. Tree hooking and double pointer jumping in SV algorithm.

the ability to parallelly iterate over edges and vertices. The second approach allows par-

allel iteration over subgraph vertices and edges. However, it consumes space and takes

more time to construct the subgraph data structure. Both the above approaches require

additional synchronizations and the cost of the subgraph computation is proportional to

the size of the input graph as well as to the number of distributed processors. Luby [91]

proposed four randomized Maximal Independent Set (MIS) algorithms that use sub-graph

computations. Figure 1.8 shows the performance of Luby’s algorithm (B) in distributed ex-

ecution. Luby proved that under the PRAM model, Luby(B) algorithm takes EO(logn) 1

time-steps with O(m) number of processors (n - the number of vertices and m - the num-

ber of edges). However, as the experimental results presented in Figure 1.8 demonstrate,

Luby’s algorithms do not scale as expected when the number of distributed processors and

graph scale are increased.

1EO(k) denote “the expected values is O(k).”
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FIGURE 1.8. Weak scaling execution times for Luby’s B MIS algorithm with
RMAT-1 graph input. (After 16 cores execution is distributed.)

1.1.7. Iterative Graph Computations. A shared-memory parallel graph algorithm it-

erates over all vertices (or edges) in parallel until some condition is met. The basic structure

of a shared-memory parallel graph algorithm is shown in Algorithm 1. Every iteration in

the while loop involves parallelly iterating vertices (or edges). Further, a typical shared-

memory algorithms maintain states against vertices or edges. These states are updated in

every iteration in the while loop depending upon the logic. The state values for the second

iteration of the while loop depend on the state values of the first iteration of the while loop.

States are changed until the condition in the while loop evaluates to false. The execution

pattern of a typical shared-memory graph algorithm is depicted in Figure 1.4.

Usually, the PRAM analysis calculates the number of steps needed for the “Depth”,

provided there is a “Breadth” number of processors. However, a shared-memory algo-

rithm extended for distributed memory also needs to execute “k” number of barriers. The

overhead of barrier synchronization is higher in distributed memory run-times than in

shared-memory run-times. When a barrier is executed, in addition to the overhead of syn-

chronization, it also creates stragglers, which waste the computation power of a subset of

processors. In addition to barriers, iterative algorithms usually require a collective oper-

ation (e.g., min, max, add, multiply, etc.,) to evaluate the condition in the while loop. The
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cost of collective operations is also higher in distributed runtimes than in shared-memory

runtimes. When the number of distributed processors increases, the overhead of synchro-

nization and collective operations also become significant.
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2

Related Work

Graphs and graph algorithms have been studied for more than a century. There are widely

used sequential graph algorithms with promising execution times for almost all the graph

problems. However, most of these sequential graph algorithms are not directly parallel-

izable (there are exceptions such as Borouka’s Minimum Spanning Tree (MST)). Parallel

algorithms need to be developed from the scratch with a different view on the graph prob-

lem. Researchers started studying about parallel graph algorithms in 1980’s. Since then

there has been signinificant effort made on parallel graph algorithms for shared mem-

ory architectures. Theoritically it is possible to implement Parallel Random Access Mem-

ory (PRAM) algorithms as distributed memory parallel algorithms. However, not all

PRAM-designed algorithms are guranteed to perform better in distributed memory paral-

lel runtimes for reasons explained in Chapter 1.

Developing parallel graph algorithms is not straightforward and is usually much harder

than designing a sequential algorithm. In fact, designing efficient distributed memory par-

allel graph algorithms is even harder. Therefore, a model for designing distributed mem-

ory parallel graph algorithm would benefit for algorithm designers.

Various programming models to write graph algorithms are proposed in graph pro-

cessing frameworks, and there are numerous amount of graph processing frameworks

(See [35] for a survey of graph processing frameworks). However, these programming

models are not meant to used as graph algorithm design models, rather they are used

14
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to implement existing graph algorithms. These programming models are engineering ef-

forts built on top of PRAM or Bulk Synchronous Parallel (BSP). In Section 2.1, I review

some of the widely available graph processing frameworks and programming models pro-

posed by them. This thesis proposes several new algorithms based on the Abstract Graph

Machine (AGM) framework. The work related to those parallel graph algorithms are dis-

cussed under Section 2.2. For shared memory graph algorithms spatial ordering has been

studied in terms of schedulers. These scheduler abstractions are discussed in Section 2.3.

The performance model proposed in this thesis requires to model the graph algorithm,

runtime and the input graph. The graph algorithm is modeled in terms of the AGM and/or

Extended Abstract Graph Machine (EAGM). There are several abstract machine models

for the runtime. Existing abstract machine models are discussed in Section 2.3.1. Input

graph can be modeled in terms of the graph characteristics. Related work for modeling

input graph characteristics is discussed in Section 2.3.5.

2.1. Graph Processing Frameworks

Pregel – Pregel [94] is a distributed graph processing framework that uses the BSP exe-

cution model. In Pregel, algorithm logic is expressed using the vertex-centric approach.

In other, words, Pregel executes a function on a vertex locally and communicates state

changes to distributed processors in a single super step. After each local computation and

communication there is a barrier synchronization. The model of computation in Pregel and

AGM are different in several ways. First, Pregel uses BSP approach while AGMs execu-

tion without any ordering on work is asynchronous. While Pregel is vertex-centric, AGMs

are work driven. A work unit definition could be vertex centric, edge centric or possibly

a collection of vertices. Further, the concept of ordering is not explicit in the Pregel pro-

gramming model but AGM orderings are explicit. In summary, Pregel is proposed as a

graph processing framework to express existing graph algorithms, but I propose an AGM

as a model for designing families of distributed memory parallel graph algorithms. AGM

algorithms achieve high performance in distributed systems by balancing synchronizing
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overhead and local computations while avoiding calculations such as subgraph computa-

tions. In fact, AGM algorithms with a single equivalence class that have a vertex as the

first element in a work unit can be implemented in Pregel in a single superstep.

Giraph – Apache Giraph [25] is an open source implementation of Pregel concepts. There-

fore, the discussion carried out above applies to Giraph as well.

GraphLab – GraphLab [90] is an asynchronous distributed graph processing framework.

GraphLab programming abstraction provides access to information on the current vertex,

adjacent vertex and adjacent edges, irrespective of the edge direction. GraphLab essen-

tially uses a Gather-Apply-Scatter (GAS) computation model. The Gather phase requires

synchronous communication. Because of this, GraphLab programs inefficient when the

graph is 1D distributed. However, GraphLab internally uses efficient scheduling (execu-

tion ordering) to reduce the amount of distributed communication. GraphLab and AGMs

are different in several ways. First, AGM is not based on GAS primitives. Second, just like

for Giraph and Pregel, ordering is not explicit in GraphLab abstraction while ordering is

explicit in AGMs. Third, the AGM model does not rely on any synchronous communica-

tion.

There are many more distributed graph processing frameworks (See [35], Table I, for a

list). Most of those graph processing systems use BSP or GAS as the programming model.

However, it is not straightforward to implement existing graph algorithms on those mod-

els efficiently, mainly due to factors like synchronization overheads and increased dis-

tributed communication. Therefore, it is necessary to introduce graph algorithms that

minimize synchronization overhead and reduce distributed communication.

2.2. Parallel Graph Algorithms

In this research, I study the internal behaviour of many available parallel graph al-

gorithms. I did not find a well-defined classification of parallel graph algorithms based

on the execution behaviour of existing parallel graph algorithms. However, I observed

16



www.manaraa.com

that there are two classes of graph algorithms, they are: 1. iterative graph algorithms,

and 2. stat-driven algorithms. The class of state-driven graph algorithms is introduced in

this thesis (See Chapter 3), but some of the existing parallel graph algorithms are already

state-driven. In some contexts, these algorithms are referred as data-driven algorithms, but

I was unable to find a precise definition for data-driven algorithms; therefore, I use the

term “state-driven graph algorithms” to identify algorithms that can be modeled using an

AGM.

Most of the existing parallel graph algorithms designed for shared memory are itera-

tive algorithms, meaning they iterate through vertices or edges in parallel and terminate

the algorithm when it satisfies a certain condition. These algorithms further incorporate

techniques such as subgraph computations (e.g., [91]), set operations on vertices or edges

(e.g., [44], [106]). In these algorithms, the available parallelism is defined by the iterating

variable, (e.g., number of vertices or number of edges).

State-driven algorithms implicitly define a data dependency by the structure of the

graph. Usually these algorithms maintain a state at the vertex level and state changes are

pushed on edges to other vertices. Dijkstra’s Single-Source Shortest Paths (SSSP) algorithm

is an example of a state driven algorithm. Further, most of the existing Single Source Short-

est Path algorithms are state-driven algorithms (except Bellman-Ford SSSP [15]). State-

driven graph algorithms can be further divided into two sub-categories:

(1) Label setting algorithms.

(2) Label correcting algorithms.

Ahuja et al. [3] used the above classification to categorize graph traversal algorithms.

However, we can use above classification to study state-driven algorithms (since state-

driven algorithms also use a form of a traversal). The label essentially represents the state

associated with a vertex or an edge. In label setting algorithms, a vertex state is changed

only once, but in label correcting algorithms the label can be set many times. However,

at the end of the execution, the algorithm assures states are correct. Another orthogonal

way to look at state-driven algorithms is the order in which labels are getting updated. If
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a label setting or label correcting algorithm requires a specific order on how those labels

are set, then we call such algorithms ordered algorithms. However, if the execution order is

irrelevant we call those algorithms un-ordered algorithms.

The un-ordered, state-driven algorithms are the main focus of this research. The AGM

algorithms (state-driven) are a subclass of un-ordered algorithms. The algorithms I derive

are either label-setting or label-correcting. AGM algorithms start with an initial set of work

units. Then, the algorithm execution creates a Directed Acyclic Graph (DAG) starting from

initial vertex set or edge set encapsulated in work. Because of the un-ordered characteris-

tic, there is more than one way to construct execution DAGs. A suitable ordering defines

an efficient execution of the DAG.

Un-ordered algorithms are not common for many graph applications. There are un-

ordered algorithms for graph applications such as Single Source Shortest Paths and Breadth

First Search. However, such algorithms are not widely available for graph applications

such as Connected Components, Maximal Independent Set or Strongly Connected Compo-

nents. As part of this research, I show that existing un-ordered algorithms for a particular

graph application can be generalized using the AGM framework. For graph applications

that do not have state-driven graph algorithms, new algorithms can be derived. In the

following, I briefly review previous work for algorithms I introduced/introducing in this

research.

2.2.1. Breadth First Search. Breadth First Search (BFS) graph problem involves visit-

ing every vertex in the graph from a given source vertex. Unlike Depth First Search (DFS),

BFS is easily parallelizable. A simple parallel solution is to visit vertices in parallel. A

more sophisticated approach is to visit vertices level by level and vertices in each level

are visited parallely (aka level-synchronous BFS [21]). The PRAM algorithm for BFS is a

straightforward extension of the sequential BFS algorithm. Multi-threaded solutions for

BFS problems are discussed in [10, 102]. These algorithms are mostly based on level-

synchronous BFS discussed in [21]. The same level-synchronous algorithm is also used

in GPU systems in [63, 92, 140]. The level-synchronous algorithm is further optimized to
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different multi-core platforms and these efforts are discussed in [1, 81, 138]. Several dis-

tributed implementations of BFS are also available. Yoo et al. [139] discuss a BFS imple-

mentation on the BlueGene/L system. [29] discuss a BFS implementation for Partitioned

Global Address Space (PGAS) systems and [37] discuss a BFS implementation on active

message framework. Further, there are many BFS implementations on graph processing

frameworks (e.g., Boost [60], Pregel [94] etc.,). The AGM formulation for BFS is straight-

forward. The original sequential algorithm can be directly modeled in an AGM. Further,

we can see that level-synchronous BFS is a specialized version of sequential BFS, where it

orders work by level.

2.2.2. Single Source Shortest Path. SSSP is a well-studied problem in the graph algo-

rithm community. A number of sequential algorithms were introduced including Bellman-

Ford SSSP algorithm [14], Gabow’s SSSP Algorithm [47], Dijkstra’s SSSP algorithm. Dijk-

stra’s algorithm is the most popular sequential algorithm and several variations of Dijk-

stra’s algorithm are also found in the literature; e.g., Dijkstra’s algorithm with lists [86],

Dijkstra’s algorithm with Fibonacci heap [46], etc. All algorithms were developed based

on the principles of relaxation and ordering, and then all can be modeled using an AGM.

Orderings in SSSP algorithms were studied by Crauser, Meyer, and Sanders for de-

veloping parallel SSSP algorithms. Crauser introduced a parallel version of Dijkstra’s al-

gorithm [32] that divides Dijkstra’s SSSP algorithm into some phases so that each phase

can be processed in parallel. Meyer researched adaptive bucket splitting for SSSP problem

in [99]. Then, Meyer and Sanders presented ∆-Stepping which is another form of SSSP

algorithm that operates in phases with parallel work. KLA uses levels to separate parallel

processing phases. The above algorithms can also be used in distributed settings. Dis-

tributed implementations of Crauser’s SSSP algorithm and ∆-Stepping SSSP can be found

in Parallel Boost Graph Library [39].

2.2.3. Connected Components. Computing connected components is another well-

studied problem. The existing sequential algorithms to find connected components either
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use BFS or DFS [117]. While BFS based connected components algorithms can be paral-

lelised, DFS based algorithms are not directly parallelizable.

Over the past 2-3 decades many parallel connected components algorithms were intro-

duced focusing PRAM architectures. Chandra and Daniel [66] made an early attempt to

solve the parallel connectivity problem in O(log2n) time with n2 processors. More parallel

connectivity algorithms for PRAM are discussed in [2, 8, 24, 26, 61, 68, 71, 74, 77, 88, 105, 108,

116, 123, 134]. However, the above list is not complete. Out of the existing PRAM parallel

connectivity algorithms, Shiloach-Vishkin CC algorithm is widely used. Shiloach-Vishkin

(SV) algorithm requires O(logn) iterations and needs O(n+m) processors. However, SV

algorithm requires O((m+n)logn) amount of work. A linear work, polylogarithmic depth

parallel algorithm was discussed in [124]. Another work-efficient connectivity algorithm

is discussed in [126] for streaming graphs.

Most of the existing distributed memory parallel CC algorithms are either based on

parallel search (BFS or DFS) or SV connected components algorithms. Edmonds et al. [38]

presented an implementation of distributed SV algorithm using active messages. They

also combined parallel search to optimize SV algorithms (called PS+SV). Srinivas et al. [69]

presented a distributed memory parallel CC algorithm based on SV algorithm. [69] do

several optimizations to reduce the communication volume and balance the load. Further,

they optimize CC algorithm performance for short diameter graphs by running parallel

BFS.

Two BSP-style connected components algorithms for the Map-Reduce paradigm is dis-

cussed in [115]. However, synchronization cost of these algorithms is higher than that of

the algorithm discussed in Chapter 6. A detailed scalability analysis on five distributed

connected components algorithms is carried out in [27]. All the algorithms discussed

in [27] calculate connected components locally and then resolves global connectivity. Al-

gorithms differ based on the way they resolve the global connectivity. To resolve global

connectivity algorithms use five strategies: 1. All-reduce, 2. Union-find merging, 3. graph
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contraction, 4. label propagation, 5. distributed union-find. The label-propagation algo-

rithm discussed in [27] is similar to the algorithm discussed in Chapter 6, but it does not

use ordering as method to reduce work.

2.2.4. Maximal Independent Set. Many parallel graph algorithms have been proposed

to solve the Maximal Independent Set (MIS) problem. Most of the work is focused on the

PRAM memory model; for example see algorithms in [6, 16, 52–54, 75]. Some of these al-

gorithms use randomization to break the symmetry. Algorithms that use randomization

assume vertices are anonymous and do not have priorities on vertices or generate a new

priority at every step.

Four related randomized algorithms were introduced by Luby [91]. Luby’s algorithms

select an arbitrary nonempty independent set from the original graph and remove all the

selected vertices and their neighbors from the original graph. This process is repeated in

iterations until all the graph vertices are removed from the original graph. Luby came

up with four different ways to select an independent set (select algorithm) in an iteration

(based on randomization). Every select function gives rise to a different MIS algorithm.

These algorithms (namely A, B, C, D) are discussed in detail in [91]. Luby’s algorithm

steps are executed in a synchronized fashion, that is each step (inquiring neighbor states

and updating current state) is carried out in a single lock-step. Further, the algorithm needs

to synchronize after each iteration.

Luby did a detailed analysis of his algorithm for PRAM machine models. Later Luby’s

algorithm concepts are used to implement distributed versions. Lynch discusses a dis-

tributed version of Luby’s algorithm for synchronous distributed networks in [93] (called

LubyMIS). [98] presents a LubyMIS algorithm with improved communication message

complexity. Fabian et al. [78] presented a deterministic distributed MIS algorithm. How-

ever, these algorithms assume a synchronous communication model and provides no ex-

perimental results. An asynchronous distributed memory parallel MIS algorithm was dis-

cussed under graph coloring problem in [72]. This algorithm is the basis for the AGM

formulation presented in Proposition 5.
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More recently, Blelloch et al. [16] showed that a trivial parallelization of the sequential

greedy algorithm also called lexicographically first MIS, is in fact highly parallel (poly-

logarithmic time) when the order of vertices is randomized. The algorithms discussed

in [16] use a priority DAG: a directed acyclic graph (DAG) over the input vertices where

edges are directed from higher priority to lower priority endpoints based on random val-

ues assigned to vertices. Each step adds the nodes with no incoming edges in the DAG to

the MIS and removes them and their children from the priority DAG. This process contin-

ues until no vertices remain. However, they assumed shared memory execution and algo-

rithm relies on computing a subset of vertices based on a predefined function to parallel

execute greedy MIS. Further, each round and step in the algorithm needs to be synchro-

nized, which may not be efficient in distributed execution.

2.2.5. Triangle Counting. Triangle counting has been a well-studied graph problem.

There are a number of parallel distributed-memory, parallel shared-memory, and exter-

nal memory (e.g., [97]) algorithms and implementations. Another classification of trian-

gle counting is whether an algorithm is counting an exact number of triangles or making

an approximation (e.g., [76]). In this paper our focus is distributed, shared-memory im-

plementation of triangle counting algorithms that counts the exact number of triangles.

Therefore, we limit our review to work that is more closely related to parallel triangle

counting algorithms that count exact numbers of triangles.

Shared Memory : Node-Iterator [121] is an algorithm that iterates over all vertices

and intersects adjacency lists of each pair of vertex neighbors to find the number of tri-

angles. Green et al. [57] optimized this algorithm using vertex-covers. Green et al.also

presented a multi-core implementation of Node-iterator in [58] and a GPU implementa-

tion in [59]. [125] mainly discuss two parallel cache-oblivious exact triangle counting al-

gorithms for shared memory. The first algorithm merges sorted-directed adjacency lists

of a vertex for intersection. The second algorithm uses a hash table to store edges and

perform intersections. The paper shows that these algorithms can achieve better cache

utilization. Madduri et al. [109] presented variations of triangle counting algorithms and
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how they related to performance in shared-memory platforms. [130] also discuss num-

ber of optimizations to speedup sequential and shared-memory parallel triangle counting

algorithms.

Distributed Memory : [7] discuss a Message Passing Interface (MPI) based distributed-

memory parallel triangle counting algorithm called PATRIC. PATRIC is similar to the pre-

decessor, successor’s predecessor (PSP) algorithm described above. PATRIC uses vertex ids

to partition neighbors of a vertex and performs ordering based on degree of a vertex as a

pre-processing step.

A number of triangle counting algorithm implementations are available as part of

graph processing run-times. PowerGraph [55] discusses a distributed-memory parallel

triangle counting algorithm implemented based on gather-apply-scatter primitives. [112]

discusses a triangle counting algorithm for distributed (external) memory. The algorithm

is based on the asynchronous visitor queue approach presented in the paper and the al-

gorithm is similar to PSP algorithm we discussed above. An extension of this work is

presented at the static graph challenge [111].

[9] presents a Matrix based parallel triangle counting algorithm. To minimize the com-

munication the paper also introduces a new matrix algebra primitive: masked matrix multi-

plication and uses Bloom filters [17] to minimize the overhead of communication. Several

other linear algebra based triangle counting algorithms are discussed in [137], [67] and [89]

(shared-memory). [28] and [128] discuss how triangle counting can be implemented on top

of Map-Reduce frameworks. [128], Algorithm 3, finds triangles from the least degree ver-

tex. The underlying idea behind [128], Algorithm 3 is similar to degree based vertex parti-

tioning. However, our method is based on set intersection between adjacencies while [128]

is based on a map reduce paradigm that transforms sets of tuples in multiple steps, in-

cluding generating “special” sets with markers (“$”). Further, algorithms in [128] assumes

the vertex degree of an adjacent vertex can be accessed as an attribute of the vertex. This

requires additional space to store degree (or adjacencies) as a attribute. The algorithms

presented in this paper does not assume remote vertex degree is readily available. [110]
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discuss an another Map-Reduce triangle counting algorithm that avoids the redundant

calculations using a classification method.

Many of the shared-memory triangle counting approaches discussed above are not di-

rectly applicable for hybrid memory systems due to high communication overhead. Fur-

ther, the distributed triangle counting versions does not explore the optimizations that can

be achieved using techniques such as vertex blocking, aggregation and involves heavy

pre-processing methods.

2.2.6. Minimum Spanning Tree. There are three primary sequential algorithms to

find MST of a given graph G = (V,E). They are Prim’s Algorithm, Kruskal Algorithm

and Boruvka’s Algorithm. Prim’s algorithm [31, Chapter 23] starts with an arbitrary root

vertex and grows the tree until it covers all the vertices. At each stage the algorithm adds

an edge that is safe to form the minimum spanning tree; therefore Prim’s algorithm is a

greedy algorithm. Prim’s algorithm operates similar to Dijkstra’s algorithm to find short-

est paths. Kruskal algorithm [31, Chapter 23] initially treats each vertex as a tree that is,

it starts with a forest. Then, trees are connected using the minimum weight edge from

one tree to another. Kruskal algorithm orders edges by weight and starts processing from

the smallest weight edge. Neither Prim’s algorithm nor Kruskal algorithm provides much

data parallelism. Boruvka’s Algorithm [106] provides more parallelim compared to either

of the others. As in Kruskal’s algorithm, Boruvka’s algorithm also starts with a forest.

But instead of iterating through ordered edges, Boruvka’s algorithm finds the minimum

weight edge between two components. If the algorithm finds such an edge, components

are connected using the found edge. An implementation of Boruvka’s algorithm uses dis-

joint union data structure. Most of the available PRAM algorithms are designed based on

Boruvka’s algorithm. Gallager, Humblet and Spira [48] introduced a distributed MST al-

gorithm that is based on Boruvka’s algorithm. This algorithm is also called GHS. The GHS

algorithm is widely used to resolve distributed MST problem.
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2.2.7. Strongly Connected Components. Strongly Connected Component is a subgraph

of a directed graph where every vertex is reachable from every other vertex in the sub-

graph. Strongly Connected Components (SCC) partition the original graph. Tarjan [129]

proposed an algorithm to find Strongly Connected Components using Depth-First search

(DFS). But DFS provides little support for parallel execution. Most of the parallel SCC

algorithms are based on Divide & Conquer Strongly Connected Components (DCSCC)

proposed by Fleischer et al. [44]. More algorithms similar to DCSCC are discussed in [122]

and [96]. Recently Amato et al. [131] proposed two Strongly Connected Components (SCC)

algorithms based on DCSCC that perform equally well on all types of graphs. Also, there

are algorithms that use matrix multiplication to find transitive closure (which is same as

calculating SCC) of the graph [11,120]. All those algorithms are designed as iterative algo-

rithms. Further graph algorithms that are based on DCSCC uses subgraph computations

and set operations. To the best of our knowledge there is not a state-driven parallel graph

algorithm to solve SCC problem.

2.2.8. Graph Coloring. The problem of Graph Coloring involves labeling vertices of a

graph in such a way that no two adjacent vertices are labeled with the same color. There

are many PRAM algorithms (see [50, 118, 141]) and few distributed memory parallel algo-

rithms for graph coloring. Bozdağ et al. [18] discuss a framework to implement existing

parallel greedy coloring algorithms in a distributed setting. Their framework is designed

based on BSP paradigm. Another BSP style distributed memory parallel implementation

on top of Hadoop is discussed in [49]. A distributed probabilistic algorithm is discussed

in [62]. [119] discusses implementing coloring algorithm based on Luby’s MIS on top of

Pregel like systems. An efficient distributed memory parallel algorithm is discussed by

Jones-Plassman in [72]. The AGM algorithm we propose is conceptually the same as the

Jones-Plassman coloring heuristic with chaotic ordering. Alex et al. [22] discuss two graph

coloring algorithms for shared memory. The first algorithm is a greedy iterative algorithm

based on Bozdağ’s algorithm and the second algorithm is the same as Jones-Plassman al-

gorithm. The AGM processing function without ordering resembles the Jones-Plassman
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algorithm. However, AGM framework can define more orderings and generate families of

algorithms (For example order work by color, order work by monotonic distance from the

start vertex or order work by level).

2.2.9. k-Core Decomposition. A k-core of a graph G = (V,E) is a maximal connected

subgraph of G where all the vertices have a degree of at least k. A k-core of a graph is

obtained by recursively removing all vertices of degree smaller than k. Vertices are said to

have coreness k if they belong to the k-core but not to the (k+1)-core. Vertices that belong

to k-core also belong to 1-core, 2-core ... (k-1)-core. The problem k-core decomposition is to

find the maximum coreness of every vertex in the input graph G. An O(|E|) sequential

algorithm for k-core decomposition is presented in [12]. A distributed memory parallel

graph algorithm for k-core decomposition was first discussed in [103]. The algorithm pro-

posed in [103] proves that information about coreness of neighbors is sufficient to decide

the coreness of the current vertex. Based on this idea, algorithm first make an estimate of

the coreness of vertices and then communicate that value to neighbors. At the same time

a vertex receives estimates from neighbors and uses those estimates to re-compute its own

estimate. This process continues until the algorithm converges. The AGM formulation for

k-core decomposition is equivalent to the algorithm in [103] without ordering. With AGM

formulation of this algorithm we can order work using estimated coreness values.

Another parallel Map-Reduce based algorithm is discussed in [113]. [5] presents an-

other distributed algorithm designed based on [12]. An iterative algorithm for k-core de-

composition on dynamic graphs is discussed in [41]. This algorithm works on partitioned

data and assumes a graph can change by adding/deleting edges/vertices. Other efforts to

find k-core decomposition in dynamic graphs are discussed in [87, 101].

2.3. Spatial Characteristics

Related to ordering at spatial levels, there are graph processing frameworks that use

spatial characteristics in the scheduler. However those are mostly implementations rather

than formal models like AGM. One such framework that implement spatial level ordering
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is Galois [107]. Though Galois functions in shared memory and is not directly applicable

to distributed memory, I will discuss some of the spatial features used in Galois scheduler.

Galois is an iterator based abstraction for specifying graph algorithms. The iterator is

defined over a set of work items. The body of the iterator carries the processing logic. Ga-

lois allows an application to specify an ordering and this ordering is considered when iter-

ators are executed. Galois does not strictly follow the priority enforced, rather it attempts

to do best effort ordering based on priority defined. The Galois scheduler, OBIM [82] is

interesting because its relationship with the spatial features of the physical machine. The

OBIM scheduler uses a sequence of bags where each bag corresponds to a priority order.

When processing the current bucket, work may generated for earlier buckets and those

tasks are scheduled preferentially over those in later bags.

Extended AGM enforces strict ordering on equivalence classes on the global level. But,

partition (bag) ordering is “fuzzy” for inner nodes in the spatial hierarchy instance, sim-

ilar to OBIM bags. Galois schedulers are predefined, and also, Galois does not support

composing orderings as in Extended AGM.

2.3.1. Abstract Machine Models. The cost model of the AGM depends on two main

parameters: 1. the underlying runtime, and 2. the input graph structure. In this subsection

we discuss related work on underlying runtime models. The most common runtime used

in parallel algorithm analysis is the PRAM. The analogous distributed memory runtime

to PRAM is BSP. In addition, there are distributed memory models such as LogP. These

models are discussed in detail in the following subsections.

2.3.2. PRAM. PRAM [45] is a multiprocessor model where every processor is con-

nected to a shared memory. Every processor does its own processing and in-between pro-

cessors data are shared by writing to/from the shared memory. Because of the shared

memory, two or more processors can write to or read from the shared memory location

at the same time. Based on how processors read/write from/to shared memory, PRAM

machines are further classified as follows:
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(1) Exclusive Read, Exclusive Write (EREW) : Two processors cannot read from the

same shared memory location simultaneously. All processors can simultaneously

read from distinct memory locations. Also, two processors cannot write to the

same shared memory location simultaneously. All processors can write to distinct

memory locations simultaneously.

(2) Concurrent Read, Exclusive Write (CREW) : All processors can read from any

memory location simultaneously but processors are only allowed to write to dis-

tinct memory locations simultaneously.

(3) Concurrent Read, Concurrent Write (CRCW) : All memory locations can read from

any memory location simultaneously and all processors can write to the same

memory location simultaneously. This is the weakest model from available PRAM

sub-categories.

The CRCW model has further subdivisions: 1. Priority CRCW; 2. Common CRCW; 3.

Arbitrary CRCW. These subdivisions decide which value should be written to the shared

memory location. In priority CRCW, processors have priority assigned and the proces-

sor with the highest priority writes to the shared memory. The common CRCW writes a

value to shared memory if all the values are equal. In random CRCW, a randomly chosen

value is written to the shared memory. Though there are several subdivisions of PRAM

complexities, [70] shows that once we calculate PRAM complexity for one PRAM machine

model, we can convert complexity value to other PRAM machine models.

PRAM is a simple, yet powerful model for analyzing algorithms. However, in PRAM

all processors can access all memory cells in unit time. Therefore, PRAM ignores many

factors that may become significant in distributed memory runtime environments (e.g.,

synchronization, communication cost). Therefore, PRAM complexity does not always re-

flect the correct cost of a distributed memory parallel algorithm.

2.3.3. BSP. BSP [132] is a machine model designed for distributed computations. In

this model we assume following infrastructure;

(1) A set of processor-memory pairs
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(2) A point to point communication network

(3) Barrier synchronization

The main unit of computation in BSP is the “superstep”. In each superstep a program

does local computations and then communicating local computation among processor and

finally barrier synchronization. The algorithm performance is measured by counting the

number of supersteps.

The BSP model is simple to program, independent of the target architecture, and the

performance is predictable. Further, we can treat BSP as a generalized version of PRAM.

The main disadvantage of BSP is the use of barrier synchronization. Though some believe

barrier synchronizations are not significant, our results show that barrier synchronizations

have a significant impact on performance of graph algorithms, especially at large scales.

2.3.4. LogP. LogP [33] is a more realistic distributed memory multiprocessor in which

processors communicate by point to point messages. The model specifies performance

characteristics of the network but does not assume the structure of the network.

The LogP model specifies following parameters:

(1) L : Latency – Delay incurred in communicating a message containing word from

source to destination,

(2) o : Overhead – The length of time each processor is engaged in transmission or

reception of each message,

(3) g : Gap – The minimum time interval between consecutive message transmissions

or reception of each message,

(4) P : Processors – The number of processors.

Compared to BSP, the LogP model does not need a barrier synchronization; further, the

LogP model takes into consideration factors such as overhead and gap. In BSP, overhead

and gap parameters are not taken into consideration. However, it is shown that BSP can

simulate LogP and LogP can simulate BSP.

As far as AGM is concerned, I am interested in overhead incurred in ordering, because

different orderings give different performance results. However, when the overhead of
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ordering is higher than the benefit of ordering we see poor performance results. Therefore,

it is important to consider overhead in the computational model.

2.3.5. Graph Types. AGM algorithms are not iterative algorithms, in the sense these

algorithms do not iterate through available vertices or edges. Available parallelism in

AGM algorithms depends on ordering as well as on the graph structure. Therefore, we

must consider the structure of the graph in the cost model. Particularly, we will study the

relationship between different graph features and performance of distributed memory par-

allel state-driven graph algorithms. Some of the important features that affect performance

of graph algorithms are graph diameter, degree distribution, number of connected compo-

nents, size of the largest component. However, the impact of these features depend on the

graph problem.

A broad range of graph structures have been studied. However, all of their structures

are not directly explainable using mathematics. Therefore, we usually compare their struc-

tures with random graphs. Since, by the 1990s, there was a rich theory of random graphs.

However, experimental studies has shown that random graphs do not resemble real world

graphs. This is mainly because real-world networks are not homogeneous as we assume in

random graphs. Random graphs studied up to 1990 were mostly homogeneous. Erdos &

Renyi [43] and Gilbert [51] introduced random graph models around the same time. Many

graph characteristics on those graphs have already well-studied. Especially Erdos & Renyi

did an extensive study of random graph characteristics.

However, most of the real-world graphs has a few vertices with large number of out-

going edges. Such vertices are also called “hubs”. Usually these graphs are refered as

power-law or scale-free graphs. Researchers have also studied about the power-law ran-

dom graphs and derived statistical conclusions about their features (See [4]).

There are graph generators that can generate more realistic power-law graphs. Two ex-

ample generators are R-MAT [23] or Kronecker [83]. The R-MATmodel recursively assigns

probabilities to partitions and based on those probabilities edges are added to the graph.
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Kronecker model further generalizes graphs and generates graphs closely approximate to

real world graphs interms of degree distributions and graph diameters.
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3

Abstract Graph Machine

An Abstract Graph Machine(AGM) consists of a definition of a Graph, definition of a set

WorkItems, an initial workitem set, a set of states, a processing function and a strict weak ordering

relation. The Graph is the graph that will be processed by the algorithm. In addition to the

standard vertex set and edge set, a graph definition also has the properties associated with

edges and vertices. A workitem is the basic information unit that invokes the processing

function. All the workitems generated by an algorithm are denoted using the WorkItems.

WorkItems is a set, workitem is an element of that set and workitems refers to many elements

of that set. The processing function consumes a workitem (∈WorkItems) and may produce

zero or more workitems. The processing function may change values associated with the

states. The strict weak ordering relation orders workitems into a set of ordered (induced)

equivalence classes. The interaction between the processing function and the ordering is

graphically depicted in the Figure 3.1.

<condition>

S1

S2

S3

…

<constructor>

…

w1

w2 w3

w4

w5 w6

w7
w8

T

F <state_update>

Ordering

nil

The Processing Function (    )⇡

FIGURE 3.1. An overview of the Abstract Graph Machine
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3.1. Model Primitives

3.1.1. Graph. A graph G = (V,E,vmaps,emaps), where V is the set of vertices and E ⊆
V×V , vmaps is a set of functions where each function is of the form f : V −→ X and emaps is

another set of functions where each function in emaps is in the form f : E −→X . Here X rep-

resents some set of values. For example, a weighted graph in this notation is represented

as G = (V,E,{},{weight : E −→ R}). AGM states are maintained as mappings (functions).

The domain of the state mappings is the set V . The co-domain depends on the possible

values that can be held in states. For example, in an SSSP algorithm the state mapping is

distance : V −→ R.

3.1.2. WorkItems. An AGM graph algorithm associates a state(s) with every vertex (or

edge) in the graph. A change in the state associated with a vertex (or edge) may require a

state change to states associated with adjacent vertices or incident edges. Such a require-

ment is indicated to adjacent vertices/incident edges through a work item (workitem). A

workitem carries information about the vertex/edge to be acted upon and a correspond-

ing set of values. The values may carry changes related to states or they may be used in

defining the ordering. The AGM model denotes a workitem (∈ WorkItems) as a tuple. A

tuple’s first element stores a vertex/edge and the rest of the positions store values. As

mentioned earlier, values may carry state changes/states or some value used in ordering.

To access tuple elements, the model uses the bracket operator; e.g., if w ∈ WorkItems and if

w = <v, p0, p1 . . . , pn>then w[0] = v and w[1] = p0 and w[2] = p1, etc.,. If a particular type

of value is used for ordering, we say that value type is an ordering attribute. For example,

the Dijkstra’s SSSP algorithm contains a vertex and a distance in a workitem. The distance

value will be used in updating the state associated with the vertex. A K-Level Asynchro-

nous (KLA)-SSSP algorithm workitem has a vertex, a distance and a level. In this workitem

definition, the level is an ordering attribute, but the role of the distance is same as Dijk-

stra’s SSSP workitem. The workitem values are populated by the processing function. The

size of the tuple (i.e., the number of additional elements) is determined by the states in the

algorithm and the ordering attributes used in the AGM formulation.
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3.1.2.1. Processing Function. A processing function (π) takes a workitem as an argument

and may produce more workitems based on the logic defined inside the π . Mathematically

π is declared as π : WorkItems−→ 2WorkItems. The body of the processing function consists of

logic to update states and generate new workitems. Prior to the state update logic there is a

condition that evaluates the applicability of current workitem to a state change.

In the mode a π contains a set of statement (St)s. A statement contains a condition based

on input workitem (C : WorkItems −→ {True,False}), an update to states (U : WorkItems −→
{True,False}) information on how an output workitem (wnew) should be constructed (N :

WorkItems−→ 2WorkItems). In an St the condition (C) is evaluated first; if condition evaluates

to True, U is evaluated, and if both C and U are evaluated to true, then N is invoked. The

function C says for a given workitem whether current St is applicable and the U evaluates

to True if states are changed when processing the input workitem. States are not explicit

parameters to processing functions. The AGM model treats states as side effects. Therefore,

when executing U we need to be extra cautious if updates can take place concurrently. We

discuss this in detail under data distribution (Section 4.2). The difference between U and

C is that U may have side effects when it updates states, but C does not create any side

effects. The processing function is formally defined in Definition 1.

DEFINITION 1. π : WorkItems−→ 2WorkItems

π(w) =
⋃

si∈St

si(w)

where; si : WorkItems−→ 2WorkItems

si(w) =


{wnew|wnew ∈ N(w)

if C (w) is True & U(w) is True}

{}else

The definition of the processing function for a given graph algorithm involves defining

statements. In other words, we need to define, for each statement, the condition (C), state
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update (U), and the workitem constructor (N). For brevity, we use the following notation to

represent the processing function:

NOTATION 1. π : WorkItems−→ 2WorkItems

π(w) =



{w1|w1 ∈< N1(w)>,

< U1(w)>,

< C1(w)>} ∪

{w2|w2 ∈< N2(w)>,

< U2(w)>,

< C2(w)>} ∪
...

{wn|wn ∈< Nn(w)>,

< Un(w)>,

< Cn(w)>}

In Notation 1, wi is the new workitem generated from Ni. As discussed previously, Ui

and Ci represent state update and the condition. Total work generated by w is the union of

work generated by all statements.

The processing function first executes the work in the initial workitem set. When pro-

cessing the workitems in the initial workitems set, more work can be generated. The newly

generated work is ordered and fed back again to processing functions. The vertex in every

workitem is reachable from at least one workitem’s vertex in the initial WorkItems. In other

words, the order how vertex states are changed can be represented using a Directed Acyclic

Graph (DAG). Sources of the DAG are the vertices encapsulated in the initial workitems set

(Figure 3.2). The processing function logic should be defined in such a way that each exe-

cution of a workitem converges the algorithm state/s. This behaviour is important to assure

the termination of an AGM algorithm.
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FIGURE 3.2. DAGs created during an AGM algorithm execution. Sources
are elements in the initial WorkItems.

3.1.3. The Strict Weak Ordering Relation. The strict weak ordering relation (denoted

by <wis) must satisfy the following properties:

(1) For all w ∈WorkItems, w≮wis w.

(2) For all w1,w2 ∈WorkItems, if w1 <wis w2, then w2 ≮wis w1.

(3) For all w1,w2,w3 ∈WorkItems, if w1 <wis w2 and w2 <wis w3, then w1 <wis w3.

(4) For all w1,w2,w3 ∈WorkItems, if w1 is not comparable with w2 and w2 is not compa-

rable with w3, then w1 is not comparable with w3.

Properties 1 and 2 state that the strict weak ordering relation is not reflexive and is anti-

symmetric. Property 3 denotes the transitivity of the “comparable workitems”, and Property

4 states that transitivity is preserved among non-comparable elements in the workitem set.

These properties give rise to an equivalence (i.e. non-comparable workitems belong to the

same equivalence class) relation defined on WorkItems; hence, the strict weak ordering re-

lation partitions the complete WorkItems. For example, in Figure 3.3, workitems in “A” are

not comparable to each other, but a workitem in “A” and a workitem in “B” are comparable

using the strict weak ordering relation.

Since workitems in different equivalence classes are comparable, the strict weak order-

ing relation defined on the set WorkItems induces an ordering on generated equivalence
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FIGURE 3.3. Partitioning WorkItems into equivalence classes.

classes. In general, there are several ways to define the induced ordering relation (denoted

<WIS). For work presented in this thesis, we use the definition given in the Definition 2.

DEFINITION 2. <WIS is a binary relation defined on 2WorkItems, such that if W1,W2 ∈ 2WorkItems

then; W1 ≤WIS W2 i f f

f orall w1 ∈W1 and f orall w2 ∈W2;w1 <wis w2.

3.1.4. The AGM. Having defined all supporting concepts, we now give the definition

of an AGM in Definition 3.

DEFINITION 3. An Abstract Graph Machine(AGM) is a 6-tuple (G, WorkItems, Q, π , <wis,

S), where

(1) G = (V,E,vmaps,emaps) is the input graph,

(2) WorkItems ⊆ (V ×P0×P1 · · ·×Pn) where each Pi represents a state value or an ordering

attribute,

(3) Q - Set of states represented as mappings,

(4) π : WorkItems−→ 2WorkItems is the processing function,

(5) <wis - Strict weak ordering relation defined on workitems,

(6) S (⊆WorkItems) - Initial workitem set.

In the following, we give the semantics of an AGM. An AGM starts execution with

the initial workitem set. The initial workitem set is ordered according to the strict weak or-

dering relation. Next, the workitems within the smallest equivalence class are fed to the

processing function. If the processing function generates new workitems, then they are sep-

arated into equivalence classes based on the strict weak ordering relation. The workitems
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within a single equivalence class can execute the processing function in parallel. However,

workitems in two different equivalence classes must be ordered according to the induced

relation (i.e. <WIS). When executing workitems in an equivalence class, AGM may generate

new workitems for the same equivalence class or for a different equivalence class. The AGM

executes workitems in the next equivalence class once it finishes executing all the workitems

in the current equivalence class. The next equivalence class is the equivalence class greater

than current equivalence class as per <WIS relation. However, if all the equivalence classes

greater than current equivalence class are empty, AGM falls back to the smallest equiva-

lence class generated. An AGM terminates when all equivalence classes are empty.
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E

after processing A

after processing B

after processing C

after processing D

after processing E

Termination

FIGURE 3.4. AGM executing equivalence classes generated in Figure 3.3.

Figure 3.4 shows how an AGM executes equivalence classes generated by the strict

weak ordering relation. Figure 3.4 uses the equivalence classes generated in the exam-

ple shown in Figure 3.3. Suppose the equivalence classes are ordered as follows; A <WIS

B <WIS C <WIS<WIS D <WIS E. AGM first executes workitems in A and when A is empty it is

removed from the list of equivalence classes and moves to execute workitems in B. When B

is empty, B is removed from the equivalence class list and moves to execute workitems in C,

and so on. When there are no more equivalence classes to execute AGM terminates.
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3.2. Termination & Correctness

Correctness of an algorithm assures that the output of the algorithm is the desired

solution for the given graph problem. In an AGM algorithm, at termination, states contain

the desired output and state is changed by the relevant π . Therefore, both the correctness

of the algorithm and the termination of the algorithm depends on the definition of the π .

The π logic must be defined in such a way that every time a workitem is executed,

the state is converged or unchanged. For a correctly defined processing function logic an

asynchronous algorithm converges without any ordering on workitems; i.e., the algorithm

converges with the chaotic ordering. Further it is easy to see that if algorithm converges

without any ordering on workitems, then algorithm must converge with any ordering.

The π logic must also assures that new workitems are generated only when the states

are changed. When algorithm states converge, new workitems are not generated, hence

there will not be work inserted to equivalence classes and because of that AGM execution

terminates.

3.3. Breadth First Search in AGM

The BFS graph application visits every vertex in the graph starting from a given source

vertex. In the following, I present AGM models for level-synchronous BFS [21] algorithm,

KLA BFS [64] algorithm, and parallel search based BFS algorithm.

3.3.1. Level-Synchronous BFS Algorithm. The level-synchronous breadth first search

algorithm uses data structures to store the current and next vertex frontiers. Then the next

container data are swapped with current after processing each level.

In the following, I model level-synchronous BFS with an AGM. The level-synchronous

BFS order work by the level in the resulting BFS tree. Therefore, the ordering attribute that

we are interested in is the level; hence I define WorkItemsb f s ⊆ V ×Level where Level ⊆ N.

The processing function for BFS is defined in Definition 4. The state of the BFS algorithm

is maintained in a map (vlevel : V −→ Level) that stores the level associated with each ver-

tex. An infinite value (very large value) is associated with each vertex at the start of the
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algorithm. Then the infinite value is changed as the algorithm traverses through the graph

level by level.

DEFINITION 4. πb f s : WorkItemsb f s −→ 2WorkItemsb f s

π
b f s(w) =



{wk|wk ∈< wn|wn[0] ∈ neighbors(w[0]) and

wn[1]←− w[1]+1 >,

< vlevel(w[0])←− w[1]>,

< (i f vlevel(w[0])< ∞)>}

The strict weak ordering relation arranges workitems based on the level. If two workitems

have different levels they belong to different equivalence classes, and if they have the same

level, they belong to the same equivalence class. The strict weak ordering relation for level-

synchronous BFS is given in Definition 5, and Proposition 1 gives the AGM formulation.

DEFINITION 5. <ls is a binary relation defined on WorkItemsb f s as follows: Let w1,w2 ∈
WorkItemsb f s, then; w1 <ls w2 iff w1[1]< w2[1].

PROPOSITION 1. level-synchronous BFS Algorithm is an instance of an AGM where;

(1) G = (V,E,vmaps = {},emaps = {}) is the input graph,

(2) WorkItems = WorkItemsb f s,

(3) Q = { vlevel } is the state mapping and initially ∀i ∈V,vlevel(i) = ∞,

(4) π = πb f s,

(5) The strict weak ordering relation <wis = <ls,

(6) S = {<vs, 0>} where vs ∈V and vs is the source vertex.

3.3.2. KLA BFS Algorithm. The KLA BFS algorithm and level-synchronous BFS algo-

rithm differs in terms of the way they order workitems. The level-synchronous BFS algo-

rithm orders work by a single level while the KLA algorithm can go up to K(∈ N) levels.

Therefore, the AGM formulation for KLA BFS is same as the AGM given in Proposition 1

except the strict weak relation (<wis) is given by Definition 6.
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FIGURE 3.5. Summary of AGMs for BFS algorithms.

DEFINITION 6. <kla is a binary relation defined on WorkItemsb f s as follows: Let w1,w2 ∈
WorkItemsb f s, then; w1 <kla w2 iff bw1[1]/Kc< bw2[1]/Kc.

3.3.3. Parallel Search BFS Algorithm : The parallel search based BFS algorithm does

not perform ordering on workitems and the algorithm freely traverse through un-visited

vertices. As in KLA BFS, for parallel search BFS the AGM formulation given in Propo-

sition 1 is valid except for its strict weak ordering relation. The strict weak relation for

parallel search BFS says no two workitems are related. Therefore, the appropriate strict

weak ordering relation is given in Definition 7.

DEFINITION 7. <ps is a binary relation defined on WorkItemsb f s as follows: For any w1,w2 ∈
WorkItemsb f s, w1 ≮ps w2 nor w2 ≮ps w1.

Figure 3.5 summarizes BFS algorithms discussed above. All the algorithms discussed

can be expressed as a processing function (πb f s) and an ordering. Every different ordering

generates a new algorithm. Further, we can generate new algorithms by applying different

orderings.

3.4. Summary

The AGM model expresses a graph algorithm as a function that encapsulate logic to

generate and consume work units and a strict weak ordering relation that orders those
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work units. The termination and the correctness of the algorithm only depends on pro-

cessing function logic and ordering only affects how fast an algorithm converges.
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4

Extended Abstract Graph Machine

AGM does not distinguish whether an algorithm is shared memory or distributed mem-

ory. Whether a state-driven graph algorithm is shared memory or distributed memory is

decided based on the type of the spatial memory available to an algorithm. In a system,

spatial memory is organized as a hierarchy. Architecture dependent algorithms can be

derived by imposing orderings at different spatial levels. We extend AGM to specify spa-

tial orderings for a given state-driven graph algorithm and for a given architecture with a

spatial memory hierarchy.

4.1. Memory Hierarchy

Global/
Network

Process

Thread

(A) Distributed memory pro-
gram with uniform memory
access in each process.

Global/
Network

Process

Numa

Thread

(B) Distributed memory
program with non-uniform
memory access in each
process.

Process

Numa

Thread

(C) Shared memory program
with non-uniform memory
access.

FIGURE 4.1. Spatial hierarchies of three different systems.
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Figure 4.1 shows three different spatial memory hierarchies available in three different

systems. Figure 4.1a and Figure 4.1b show memory hierarchies available in two different

distributed memory systems. The Global/Network memory is the memory available to any

process by sending/receiving messages over the network. The memory available to a local

process is denoted using Process and memory accessible to a single thread is depicted using

Thread. Figure 4.1b additionally has Numa that represents memory accessible to a partic-

ular numa domain. The last figure (Figure 4.1c) shows the memory hierarchy of a shared

memory system. Note this shared memory system does not have the Global/Network

memory level.

An extended AGM orders workitems in the root level of the memory hierarchy according

to the ordering defined in the corresponding AGM. Further, EAGM defines ordering to be

performed at other levels of the spatial hierarchy. When workitems propagate from higher

levels in the memory hierarchy to lower levels, they need to be distributed. An EAGM

also defines how to distribute workitems when they are sent from a higher memory level

to a lower memory level in the spatial hierarchy. A distribution function (D) decides how

workitems in a higher memory level are distributed to a lower memory level. In summary,

an EAGM consists of following:

(1) A spatial hierarchy of an architecture,

(2) Orderings annotated to each level in the memory hierarchy,

(3) Distribution functions attached to every down arrow in the spatial hierarchy.
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Stepping EAGM.
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(B) Distributed memory, ∆

ordering at root and dijk-
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Dnt
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(C) Shared memory, ∆-
Stepping EAGM.

FIGURE 4.2. Three different EAGMs.

Figure 4.2 shows three different EAGMs for SSSP application. The first two are dis-

tributed EAGMs and the first EAGM is the distributed ∆-Stepping algorithm. The second

EAGM (Figure 4.2b) performs ordering similar to distributed ∆-Stepping except that it per-

forms a different ordering at the numa level. At the numa level, the EAGM in Figure 4.2b

performs ordering according to <d j. Definitions for strict weak ordering relations used in

Figure 4.2 are given in Section 5. The last figure (Figure 4.2c) shows an EAGM correspond-

ing to the shared memory ∆-Stepping algorithm.

In addition to the strict weak orderings these EAGMs also have a distribution function

attached to each arrow from a higher level in the memory hierarchy to a lower level. In

general, distribution function is declared as D : WorkItems −→ N. Given a workitem in a

higher memory level, the function D returns an id that can be used to identify the lower

level memory locality. The workitem is routed to the memory locality identified by the id.

For example, given a workitem the function Dgp returns an id of the process (also called

rank) where the workitem should be routed.

Figure 4.3 shows how EAGM workitem distribution is taking place. The EAGM has

∆ ordering at the root and Dijkstra’s ordering at the numa level. The workitems in the
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FIGURE 4.3. EAGM Spatial Hierarchy. At the global level workitems are
ordered according to <∆ and at process level and thread level there is no
ordering, but at the numa level workitems are ordered according to Dijkstra’s
relation.

Global spatial level is divided between two processes (using Dgp) and each process di-

vides workitems among two numa domains (using Dpn). Then, each numa domain divides

workitems between two threads using Dnt . Typically, distributed algorithms define deter-

ministic distribution functions to separate workitems between participating processes and

distribution functions to route workitems between in-node spatial levels are random. In the

following, we discuss two commonly used distribution function implementations.

4.2. Data Distribution

The data distributions define D functions in an EAGM. There are two commonly used

distributions:

(1) 1-D distribution,

(2) Edge list distribution.

4.2.0.1. 1-D Distribution. A 1-D distribution distributes vertices equally among partic-

ipating processes. A distributed shared memory implementation of an AGM algorithm

can implement 1-D distribution in one of two ways. It can either distribute vertices among

participating processes (but without assuming ownership of a vertex to a thread, in which
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case we need to take additional actions to make sure execution is consistent), or it can first

distribute vertices among participating nodes and then further distribute vertices in a pro-

cessor among available numa domains or threads. For the latter approach we do not need

additional locks/local atomics when updating states. However, the latter approach may

suffer from greater load in-balance than the initial approach.

4.2.0.2. Edge List Distribution. Edge list distribution is more suitable when an AGM al-

gorithm uses an edge to route a workitem. In this distribution edges are distributed among

participating processes, and, as in 1-D distribution, edges can be further distributed among

participating nodes.

4.3. Spatial Ordering

Ordering in terms of a property or an attribute reduces the amount of redundant work

in AGM algorithms. For example, from the SSSP algorithms discussed in the previous sec-

tion, Dijkstra’s algorithm performs the best ordering, in that it does the minimum amount

of redundant work. However, the overhead of ordering in Dijkstra’s algorithm is sig-

nificant in a parallel distributed run-time due to the frequent synchronization. In other

words, when the AGM instance generates more equivalence classes, the global synchro-

nization overhead increases. The other SSSP algorithms discussed above reduce overhead

of ordering by chunking workitems into larger equivalence classes. This reduces the num-

ber of equivalence classes generated and hence increases the available parallelism. When

AGMs are mapped to an implementation, the ordering defined by the AGM is applied to

the highest memory level. we have designed EAGM to apply ordering at lower spatial lev-

els of a given architecture. Because of this, EAGMs reduce the amount of redundant work,

but without affecting the ordering defined by the corresponding AGM. This way the cor-

responding AGM can generate larger equivalence classes to increase the parallelism and

to reduce global synchronization overhead while using ordering at lower spatial levels to

reduce the redundant work.
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At lower spatial levels, workitems are ordered according to the strict weak relation at-

tached to them. As in the AGM, the strict weak ordering relation separates workitems reach-

ing lower spatial levels into equivalence classes. The orderings attached to the lower spa-

tial levels are performed on workitems available to the memory in the relevant spatial level.

Therefore, the orderings attached to lower spatial levels are more relaxed than the ordering

attached to the root. By default the EAGM’s spatial hierarchy assumes Chaotic (i.e. no

ordering) ordering, but specific orderings can be enforced.

There are two ways to process workitems in lower spatial levels: 1. Always process

non-empty smaller equivalence classes then process higher equivalence classes, 2. Process

all the equivalence classes according to the induced ordering and visit again the smallest

equivalence class to check whether there is more work. Do the same until there are no

more workitems in equivalence classes. My implementations use the first approach since it

is more effective for label correcting applications such as SSSP.

4.3.1. Applications. While EAGM approach is applicable to all AGM algorithms, we

use SSSP as a case study to show how architecture dependent algorithms can be gener-

ated using the EAGM. Of the SSSP algorithms discussed in Section 5, fine-grained spatial

ordering is effective for AGMs defined for ∆-stepping, KLA and Chaotic. By considering

the spatial hierarchy used in Figure 4.1b, we apply Dijkstra’s strict weak ordering relation

( Definition 10) to spatial hierarchy levels Process, Numa and Thread to derive EAGMs

(Figure 4.4). Each EAGM generates a variation of the main algorithm defined by its corre-

sponding AGM.

Figure 4.4a shows EAGM variations derived for ∆-stepping algorithm. Figure 4.4a-(i),

applies <d j ordering to Thread level and Figure 4.4a-(ii) applies <d j ordering to Numa

level and Figure 4.4a-(iii) applies ordering to Process level. EAGMs for KLA and Chaotic

are derived in the same way.

4.4. Summary

AGM is an abstract model that can express parallelism in graph algorithms. However,

AGM does not specify how an AGM algorithm can be mapped to the memory hierarchy
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FIGURE 4.4. Thread ordered, NUMA ordered and Process ordered EAGMs
for ∆-stepping, KLA and Chaotic AGMs.

of a system. The Extended AGM maps the algorithm expressed in AGM to memory. The

memory of a system is defined as a hierarchy, EAGM specifies further orderings at lower

spatial levels of an architecture. The EAGM also specifies how workitems are distributed

when a workitem is propagating from one processing function to another.
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5

Families of Graph Algorithms: SSSP Case Study

Single-Source Shortest Paths (SSSP) is a well-studied graph problem. Examples of SSSP al-

gorithms include the original Dijkstra’s algorithm and the parallel ∆-Stepping and K-Level

Asynchronous algorithms. In this chapter, we use AGM model to show that all these al-

gorithms share a common logic and differ from one another by the order in which they

perform work. We use the AGM model to thoroughly analyze the family of algorithms

that arises from the common logic. We start with the basic algorithm without any ordering

(Chaotic), and then we derive the existing and new algorithms by methodically exploring

semantic and spatial ordering of work. Our experimental results show that new derived

algorithms show better performance than the existing distributed memory parallel algo-

rithms, especially at higher scales.

5.1. Introduction

Given a graph problem, how many ways can it be solved in? In this chapter, we con-

sider the seemingly simple problem of single-source shortest paths (SSSP), where the task

is to find the shortest path from a source vertex s to every other vertex in the graph. A

number of sequential algorithms exist. The well-known Dijkstra’s algorithm [34] is “work

optimal’,’ where vertices are ordered in a priority queue based on their distance from the

source s, and every edge is traversed only once. Work optimality, however, comes at a cost

of limited parallelism and extensive synchronization. Subsequent development concen-

trated on relaxing the strict ordering of the Dijkstra algorithm to make more work avail-

able in parallel at the cost of some “wasted work” that has to be invalidated and repeated.
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For example, the ∆-Stepping [100] algorithm groups vertices into ∆-sized buckets, based on

their distances from the source s, giving an approximation of Dijkstra ordering. Vertices in

a bucket are processed in parallel, and picking an appropriate ∆ ensures the right balance

between parallelism and wasted work. The K-Level Asynchronous [64] algorithm is simi-

lar, but it uses topological distances instead of shortest path distances from the source s to

order work into buckets1.

TABLE 5.1. Orderings in SSSP
algorithms.

Algorithm Ordering
Dijkstra’s Global priority

queue
∆-Stepping Global distance

equivalence classes
defined by ∆

KLA Global topological
distance
equivalence classes
defined by k

Chaotic None

ALGORITHM 2. The
SSSP relax function

1: Input: Task (v,d), distances D
2: if d < D(v) then
3: D(v)← d
4: ∀vn ∈ neighbors(G,v) :
5: Task(vn,dv +weight(v,vn))
6: end if

In both ∆-Stepping and K-Level Asynchronous, processing of the buckets inserts im-

plicit synchronization points, since processing of a bucket cannot begin until all previous

buckets are finished. The Chaotic SSSP does away with synchronization altogether by pro-

cessing all the vertices in parallel in an arbitrary order, resulting in maximum available

parallelism at the cost of more wasted work.

Despite the variety of algorithms, analysis reveals that they are all based on the same

core logic of relaxation, as shown in algorithm 2. Relaxation takes as the input a vertex-

distance pair and a distance map (D), and produces more vertex-distance pairs if the dis-

tance was improved. These newly produced pairs are further relaxed, and the algorithms

differ by how these relaxations are ordered (table 5.1). We methodically investigate this

similarity between the seemingly different SSSP algorithms. To do that, we model the

algorithms using the AGM

1K-Level Asynchronous with single-hop buckets is equivalent to the Bellman-Ford algorithm [14].
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We present AGM models for all the algorithms listed in table 5.1, and we show that

they change by the way in which they order work. Then we show that new algorithms can

be developed by methodically discovering new orderings. We then use EAGM, to develop

variations of algorithms presented in table 5.1 with additional ordering at different spatial

levels of architecture such as node (process), numa (non-uniform memory access) region,

and thread, resulting in nine different SSSP algorithms. We compare the weak scaling

performance of the new algorithms with existing distributed memory parallel algorithms

and also with the SSSP algorithm in PowerGraph [55] and in Parallel Boost Graph Library

(Parallel BGL) [40] for a performance base line. Our results show that some of the new

variations of SSSP algorithms perform better than the well-known algorithms, especially

at large scales.

5.2. SSSP Algorithms in AGM

In this section, we present AGM models for algorithms discussed in table 5.1. To spec-

ify these models, we need to provide AGM elements from Definition 3. First, we provide

the input graph, the WorkItems, the set of states, the processing function, and the initial

workitem set. Then, we show that adding different orderings to the AGM models, we get

existing distributed SSSP algorithms.

The input graph for the SSSP problem is a weighted graph: G=(V,E,vmaps= {},emaps=

{weight}). The basic workitem includes a vertex and its distance and WorkItems for SSSP

is defined as WorkItemssssp ⊆ (V ×Distance). The basic workitem is extended by additional

ordering attributes when necessary (e.g., in K-Level Asynchronous). The set of states in-

cludes a single mapping distance for storing the distance from the source vertex. The dis-

tance mapping is defined as distance : V −→ R. The processing function for SSSP changes

the distance state if the input workitem’s distance for a given vertex is less than what is

already stored for that vertex in the distance map. The list of adjacent vertices of a given

vertex are accessed through the neighbors : V −→ 2V function. The basic (it will be extended

with additonal functionality for some algorithms) processing function for the SSSP graph

problem is defined in Definition 8.
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DEFINITION 8. πsssp : WorkItemssssp→ 2WorkItemssssp

π
SSSP(w) =



{wn|〈wn[0] ∈ neighbors(w[0])

and wn[1] = w[1]+weight(w[0],wn[0])〉,

〈distance(w[0])←− w[1]〉,

〈if w[1]< distance(w[0])〉}

The SSSP processing function (πsssp) has a single statement. The statement is executed

only if the input workitem, ws’ distance is less than the value stored in the distance map for

the vertex in the workitem (w[0], the first element of the workitem tuple). Constructor of the

statement specifies how to construct the new workitem wn. The processing function defines

the core logic that needs to be achieved by any SSSP algorithm. Some of the algorithms

discussed in table 5.1 extend this definition because of the way they order workitems.

5.2.1. Chaotic SSSP. The Chaotic SSSP algorithm does not order workitems. Therefore,

the strict weak ordering relation is defined in such a way that no two workitems are related

(defined in Definition 9).

DEFINITION 9. <ch: WorkItemssssp×WorkItemssssp is a binary relation where ∀w1,w2 ∈WorkItemssssp :

w1 ≮ch w2.

This relation induces only one equivalence class, and all the workitems in this class can

be executed in parallel. The AGM model for Chaotic SSSP algorithm is given in Proposi-

tion 2. The presented AGM uses the strict weak ordering defined in Definition 9.

PROPOSITION 2. Chaotic Algorithm is an instance of an AGM where

(1) G = (V,E,vmaps = {},emaps = {weight}) is the input graph,

(2) WorkItems = WorkItemssssp,

(3) Q = {distance} is the state (initially ∀v ∈V,distance(v) = ∞),

(4) π = πsssp,

(5) Strict weak ordering relation <wis = <ch,

(6) S = {<vs, 0>} where vs ∈V and vs is the source vertex.
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5.2.2. Dijkstra’s SSSP. The Dijkstra’s SSSP algorithm globally orders workitems by

their associated distances ( Definition 10).

DEFINITION 10. <dj: WorkItemssssp×WorkItemssssp is a relation where ∀w1,w2 ∈WorkItemssssp :

w1 <dj w2 iff w1[1]< w2[1].

The AGM formulation for Dijkstra’s SSSP is same as the AGM formulation in Propo-

sition 2 except for the strict weak ordering. In <dj, two workitems belong to the same equiv-

alence class if they have the same distance. In general, the equivalence classes generated

by <dj are small, hence the parallelism available in Dijkstra’s SSSP algorithm is limited.

5.2.3. ∆-Stepping Algorithm. ∆-Stepping [100] SSSP algorithm arranges vertex-distance

pairs into distance buckets) of size ∆ ∈ N and executes buckets in order. Within a bucket,

vertex-distance pairs can be executed in any order. Processing a bucket may produce extra

work for the same bucket or for successive buckets. The strict weak ordering relation for

∆-stepping algorithm is given in Definition 11. As for Dijkstra’s algorithm, ∆-Stepping

AGM is as in Proposition 2 with ordering replaced by <∆ .

DEFINITION 11. <∆: WorkItemssssp×WorkItemssssp is a relation where ∀w1,w2 ∈WorkItemssssp :

w1 <∆ w2 iff bw1[1]/∆c< bw2[1]/∆c.

5.2.4. K-Level Asynchronous Algorithm. The KLA paradigm [64] processes vertices

up to k topological levels asynchronously (k can be varied). Correspondingly, the K-Level

Asynchronous AGM orders workitems by their level. To do this, workitems include an addi-

tional ordering attribute. The K-Level Asynchronous WorkItems is defined as WorkItemskla ⊆
V ×Distance×Level where Level ⊆N. The processing function also is extended to populate

the level attribute ( Definition 12).
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DEFINITION 12. πkla : WorkItemskla −→ 2WorkItemskla

π
kla(w) =



{wn|〈wn[0] ∈ neighbors(w[0])

and wn[1] = w[1]+weight(w[0],wk[0])

and wn[2] = w[2]+1〉,

〈distance(w[0])←− w[1]〉,

〈i f w[1]< distance(w[0])〉}

The workitems within consecutive k levels can be executed in parallel. The strict weak

ordering relation for K-Level Asynchronous is given in Definition 13. The AGM for K-

Level Asynchronous algorithm is as AGM in Proposition 2 except for the processing func-

tion, which is replaced with πkla, and for the strict weak ordering, which is replaced with

<skla defined in Definition 13.

DEFINITION 13. <skla: WorkItemskla×WorkItemskla is a relation where ∀w1,w2 ∈WorkItemskla :

w1 <skla w2 iff bw1[2]/Kc< bw2[2]/Kc.

PROPOSITION 3. K-Level Asynchronous Algorithm is an instance of AGM where:

(1) G = (V,E,vmaps = {},emaps = {weight}) is the input graph,

(2) WorkItems = WorkItemst ,

(3) Q = {distance} is the state mapping and initially ∀i ∈V,

distance(i) = ∞,

(4) π = πkla,

(5) Strict weak ordering relation <wis = <skla,

(6) S = {<vs, 0, 0>} where vs ∈V and vs is the source vertex and level starts with 0.

5.2.5. Family of SSSP Algorithms. The SSSP AGMs are summarized in fig. 5.1. Di-

jkstra’s, ∆-Stepping , and Chaotic algorithms share the same processing function but with

different orderings. Both Dijkstra’s algorithm and ∆-Stepping algorithm use distance to

define their strict weak orderings. K-Level Asynchronous uses levels to order workitems.

The only difference between πsssp and πkla is that πkla has logic to update level attribute in
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TABLE 5.2. Thread ordered, Numa ordered and Process ordered EAGMs
for ∆-stepping, KLA and Chaotic AGMs.

buffer threadq numaq nodeq

∆
-S

te
pp

in
g <∆(5)

↓
<∆(5)
↓

<∆(5)
↓

<∆(5)
↓

<ch
↓

<ch
↓

<ch
↓

<dj
↓

<ch
↓

<ch
↓

<dj
↓

<ch
↓

<ch <dj <ch <ch

K
-L

ev
el

A
sy

nc
hr

o-
no

us

<kla
↓

<kla
↓

<kla
↓

<kla
↓

<ch
↓

<ch
↓

<ch
↓

<dj
↓

<ch
↓

<ch
↓

<dj
↓

<ch
↓

<ch <dj <ch <ch

C
ha

ot
ic

<ch
↓

<ch
↓

<ch
↓

<ch
↓

<ch
↓

<ch
↓

<ch
↓

<dj
↓

<ch
↓

<ch
↓

<dj
↓

<ch
↓

<ch <dj <ch <ch

newly generated workitems. In fig. 5.1, we represent this with a dashed arrow to indicate

that πkla is an extended version of πsssp. Because all the algorithms use the same process-

ing function (with ordering extension for K-Level Asynchronous), they form an algorithm

family.

5.3. SSSP EAGMs

<< level >>

⇡
sssp

<dj <ch

Dijkstra’s
SSSP

Chaotic
SSSP<skla

KLA-SSSP

⇡kla

   -Stepping
SSSP

�

 �<

FIGURE 5.1. Summary of AGMs for
SSSP algorithms.

AGMs are abstract and independent of im-

plementation details. However, distributed

graph algorithms are strongly impacted by

properties of the distributed architecture they

run on. To capture that impact, we introduce

extended AGM (EAGM) that represents spacial

distribution on a distributed memory platform.

Currently, we recognize 4 hierarchical levels of
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distribution that roughly match modern dis-

tributed systems (arrows indicate inclusion):

Global −→ Process −→ Numa −→ Thread

Given the spatial hierarchy, we use EAGMs to specify spatial orderings for AGM graph

algorithms. Spatial orderings apply non-semantic ordering on workitems throughout the

spatial hierarchy of a distributed machine. The ordering at the Global level is the same as

in the underlying AGM, keeping the semantics of an AGM intact. Since the global ordering

maintains the equivalence classes of AGM, workitems can be further ordered at the lower

levels of the hierarchy. For example, two different EAGM spatial orderings for ∆-Stepping

are <∆(5)→<ch→<ch→<ch and <∆(5)→<ch→<ch→<dj where each ordering corresponds

to the EAGM level (the orderings are as defined in the previous section). The first spatial

ordering enforces <∆(5)at the global level, but leaves execution in buckets unordered (<ch).

The second spatial ordering applies Dijkstra’s ordering at the Thread level (<dj), which

means that workitems at every thread are ordered in a priority queue as they reach the

thread in the spatial distribution. In summary, an EAGM consists of an AGM and a spatial

architecture hierarchy annotated by spatial orderings.

In table 5.2, we apply Dijkstra’s strict weak ordering relation ( Definition 10) to spatial

hierarchy levels of Process (nodeq), Numa (numaq), and of Thread (threadq) to derive

EAGMs for algorithms in table 5.1. The buffer represents the original algorithm without

spatial level orderings. The table shows orderings for each combination of ordering and

AGM, where the ordering chain corresponds to the archtectural hierarchy given at the

beginning of this section. Each EAGM generates a variation of the main algorithm defined

by its corresponding AGM. By methodical application of spatial ordering, we derive a

family of SSSP algorithms. In the next section, we evaluate the performance of different

EAGMs.
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FIGURE 5.2. Timing results of ∆-stepping. Shaded region indicates single
node runs.

5.4. Experiments & Results

In this section, we implement and compare the weak scaling performance of each de-

rived EAGM in table 5.2. In addition, we also compare the performance of the EAGMs to

the performance of SSSP algorithms available in two well-known graph processing frame-

works PowerGraph [55] and Parallel BGL [40].
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FIGURE 5.3. Timing results of KLA. Shaded region indicates single node runs.
Weak scaling performance is measured on two types of synthetic R-MAT [23] graphs:

RMAT1 graphs with R-MAT parameters A = 0.57, B = C = 0.19,D = 0.05 and with edge

weights ranging 0-100, and RMAT2 graphs with R-MAT parameters A = 0.5, B = C =

0.1,D= 0.3 and with edge weights 0-255. All experiments were carried out on Cray XE6/XK7
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FIGURE 5.4. Timing results of the Chaotic EAGM. Shaded region indicates
1-node runs.

nodes, each with 2 AMD Opteron Abu Dhabi CPUs (for total of 32 cores), and 64 GB of

memory per node (4 numa domains, 2 per CPU).

The algorithms are implemented in AM++ [136], a light-weight active messaging frame-

work. Graph vertices are equally distributed among distributed processes and in-node

graph structure is stored in compressed sparse row format. Disjktra’s orderings is imple-

mented using concurrent priority queues at the process and the numa levels, and using

standard priority queue at the thread level.

5.4.1. Scaling Results. The weak scaling results are presented in figs. 5.2 to 5.4. Exper-

iment results for basic AGMs are represented using the buffer designator. As in table 5.2,

EAGMs with thread-level, node-level and numa-level Dijkstra orderings are represented

using threadq, nodeq and, numaq designators. We tested the performance of ∆-Stepping

EAGMs for three delta values (∆ = 3,5,7) and K-Level Asynchronous EAGMs with three k

values (k = 1,2,3). In the following, we discuss results in detail.

5.4.1.1. ∆-Stepping Variations. The basic ∆-stepping (buffer) algorithm performs the

best in-node (up to 32 cores). Since no communication is involved, the additional ordering
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provided by the other implementations does not provide a sufficient benefit for its over-

head. In general, the threadq variation is the fastest in the distributed setting for both

RMAT1 and RMAT2 graph inputs. The nodeq and the numaq variations perform better

with increasing deltas, but they are not competitive with the buffer implementation.

For RMAT1 graph inputs, PoweGraph shows better distributed performance for small

scale graphs. However, for larger graph inputs, PowerGraph does not scale well. All the

∆-Stepping EAGMs outperform PowerGraph at higher scales, especially for RMAT2. The

threadq EAGM shows better performance than PBGL on RMAT2 graphs, and for RMAT1

graphs, all EAGMs outperform PBGL.

In summary, while in-node performance is dominated by the basic ∆-Stepping algo-

rithm (excluding PowerGraph and PBGL results), the distributed execution shows signifi-

cant improvement with the threadq EAGM. Although the numaq and nodeq variations

provide more ordering than the threadq variation, the overhead of the concurrent order-

ing reduces the performance of numaq and nodeq.

5.4.1.2. KLA Variations. KLA variations show different performance characteristics than

∆-stepping. For KLA, the nodeq and the numaq variations perform the best at scale, with

K = 1. At greater K values, the performance of threadq is comparable to nodeq and

numaq, but, in absolute terms, the performance at higher K values is worse than at K = 1.

The numaq and nodeq provide the best potential ordering by ordering the most items. The

overheads are kept at bay because at K = 1 all the writes to the next level’s queue occur

before all the reads. For higher K values, writes and reads get more mixed, and the advan-

tage of numaq and nodeq becomes less pronounced. In KLA, for both RMAT1 and RMAT2

inputs, all EAGM variations (threadq, nodeq and numaq) perform better compared to

the basic buffer variation.

For RMAT1 graph inputs, PowerGraph outperforms almost all the KLA EAGMs. How-

ever, PowerGraph execution time tends to increase with the scale, but K-Level Asynchro-

nous EAGM variations tend to scale well with the increasing scale. For RMAT2 graph

inputs, all the K-Level Asynchronous EAGM variations, except for buffer, outperform

PowerGraph in distributed execution. However, for RMAT2, PBGL outperforms almost
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all EAGMs, and numaq and nodeq tend to perform better at higher scales with K = 1. All

the EAGMs show better performance than PBGL for RMAT1 graphs.

5.4.1.3. Chaotic Variations. For chaotic EAGMs, the thread-level ordering shows good

performance, specially in distributed execution. For RMAT2, threadq weak scales al-

most perfectly in distributed execution. In addition, the threadq variation outperforms

GraphLab and PBGL for both RMAT1 and RMAT2 graphs in distributed execution. Fur-

thermore, the threadq Chaotic EAGM is faster than all other EAGMs in terms of absolute

performance, demonstrating how the structured (E)AGM approach may result in new,

highly performant algorithms.

5.5. Summary

Using the AGM abstraction, we showed that existing distributed graph algorithms; Di-

jkstra’s SSSP, ∆-Stepping SSSP and K-Level Asynchronous has the same processing logic

but with different orderings. These orderings generate different equivalence class either

based on distance or based on the level. We also showed, proposed EAGM model gener-

ates more fine-grained orderings at less synchronized spatial levels. Results of our experi-

ments showed that some of the generated algorithms perform better compared to standard

distributed memory, parallel SSSP algorithms under different graph inputs.
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6

Priority Based Connected Components

Connected Component computation is an important graph problem used in many appli-

cations. In this chapter, we present a priority-based asynchronous distributed memory

parallel graph algorithm for computing connected components in a graph. The proposed

algorithm avoids synchronization and uses priority to reduce the amount of work. Exper-

imental results show that the proposed algorithm performs better compared to traditional

Connected Components (CC) algorithms, such as Shiloach-Vishkin (SV).

6.1. The Problem

For an undirected graph G = (V,E), where V and E represent vertex and edge set,

respectively, we say v,u ∈ V are in the same connected component if a path exists from u

to v.

Sequential algorithms to solve CC problem use either BFS or DFS. While DFS algo-

rithms are not directly parallelizable [117], BFS algorithms can be parallelized. However,

in the worst case, BFS algorithms can perform up to O(|V |2) of work. Although there

are more sophisticated parallel algorithms proposed for PRAM architecture, in practical

distributed computing settings, the performance of these algorithms suffer from the over-

heads of synchronization and remote message communication. Further, their performance

varies depending on the structure of the input graph.

64



www.manaraa.com

6.2. The Asynchronous Algorithm

The proposed algorithm works based on a DAG. To construct the DAG, we assume

that each vertex in the graph is associated with a priority. The priority assigned to a

vertex is unique. We represent the priority vector with α . For v1,v2 ∈ V and v1 6= v2,

α[v1] < α[v2] or α[v2] < α[v1]. The lower the value of α[v](v ∈ V ), the higher the priority.

The priority vector can be easily constructed by assigning the global vertex id to vector

values. However, in order to avoid any load imbalance issues in distributed execution,

the vertex ids must be randomly distributed among ranks (assuming graphs is 1D dis-

tributed). Further, we assume that the algorithm maintains a state called vcomponent. This

state has an entry per each vertex. The component state stores the priority value of the

highest priority vertex reachable from the current vertex. Initially, the component state of

a vertex is set to its vertex priority.

The algorithm starts with the sources of the DAG. A source is a vertex, where priority

is higher than its neighbors (e.g., see vertex 1 and 12 in Figure 6.1). Source vertices send

their priority values to all their neighbors (Figure 6.2). Every time a vertex receives a mes-

sage from a neighbor, it checks whether the priority value of its neighbor is higher than

the current component priority. If it is higher, then the current vertex changes its compo-

nent value to the newly received priority value. Whenever, a vertex component value is

updated, the vertex checks whether the updated component priority is greater than all of

its neighbors. If so, the vertex will notify all of its neighbors of the updated priority value

(Figure 6.3). However, if the vertex has a neighbor that has a higher priority than the newly

updated priority, it will not send (See vertex 14 in Figure 6.3). The main objective of this

algorithm is to propagate the search for the highest priority vertex in a component. When

there are no more changes in the component state, the algorithm terminates (Figure 6.4).
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FIGURE 6.1. Initial step of the algorithm. Numbers depict the value of com-
ponent state for each vertex.
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Algorithm 3 Distributed-Memory Parallel CC Algorithm

1: procedure CC(Glocal, Set:sources)
2: for each Vertex v in sources do
3: Send(v, vcomponent[v])
4: end for
5: end procedure
6:
7: procedure RECEIVE(Vertex:v,Priority:p)
8: if (p < vcomponent[v]) then
9: vcomponent[v]← p

10: setadj← adjacencies(v, Glocal)
11: if min(setadj) > p then
12: for each u in setadj do
13: Send(u, vcomponent[v])
14: end for
15: end if
16: end if
17: end procedure

The CC algorithm in Algorithm 3 assumes α[v] = v,∀v ∈ V . The main entry procedure

is “CC” (Line 1 –Line 5). The algorithm assumes vertices are uniformly distributed among

nodes. The Glocal represents the sub-graph corresponding to the current Rank. “CC” pro-

cedure also takes the source vertex set. The function called Send (Line 3,Line 13) and the

procedure Receive are related to each other. Whenever Send is called, it will invoke the Re-

ceive (Line 7–Line 17) procedure (maybe in a remote locality). The Receive procedure then

implements the execution logic explained in the previous paragraph.

If there is more than one source vertex, there will be multiple parallel searches in the

same component. In that case, the search with the higher priority source vertex will take

over the search with the lower priority source vertex.

It is important to note that the proposed algorithm starts with only a few vertices

(source vertices) and gradually increases the amount of work. Then, when the most num-

ber of vertices reach their saturated state (i.e., when a vertex is reached by the highest

priority vertex it can reach), the amount of work gradually declines. Finally, when all

vertex states are finalized, algorithm terminates.

The proposed algorithm is a label-correcting algorithm. i.e., the component state of a

vertex is repeatedly changed until its value is equal to the source vertex with the highest

priority. Also, note that the proposed algorithm is un-ordered: i.e. for the correctness of
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the algorithm, the order states being changed do not have an effect. However, the order

states being changed have an impact on the performance of the algorithm. The sooner the

highest priority source vertex can update vertices in a component, the sooner the algorithm

converges.

6.3. Ordering

The proposed algorithm is vertex-centric. Every time a component state associated

with a vertex is changed, a message is sent to its neighbors, including the neighbor vertex

and the updated component priority. We call such a message a workitem.

The performance of the algorithm depends on how we order workitems. Ordering is

added in such a way that algorithm minimizes synchronization. We use “data parallel pri-

ority queues” to order workitems. “Data parallel priority queues” maintain a priority queue

per each parallel thread. When a thread receives a workitem, it is added to the appropriate

priority queue.

Priority-based distributed memory parallel CC algorithm is listed in Algorithm 4. The

algorithm consists of four procedures. The Initialization procedure (Line 1–Line 5) is called

at the start of the algorithm. During initializing, the component state (vcomponent) of every

vertex is initialized to its priority (SeeLine 3). The rest of the procedures (Run, HandleQueue,

and Receive) are called in each parallel threads.

Once a thread is spawned, the algorithm invokes Run procedure with the thread id.

The Run function calculates the source vertex set for DAG execution (Line 7–Line 19).

Found source vertices are pushed into the priority queue relevant to the current thread.

Finally, Run procedure calls HandleQueue procedure (Line 20).

The HandleQueue pops workitems from the priority queue relevant to the current thread

and executes logic similar to logic inside the Receive function in Algorithm 3. As in Algo-

rithm 3, every Send invokes a Receive procedure in a remote rank or in the same rank. The

Receive function is quite similar to the Receive function explained in Algorithm 3 except that

Receive function in Algorithm 4 inserts workitem to the priority queue (relevant to invoking

thread) if workitem updated the component state.
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Algorithm 4 Priority based CC Algorithm

1: procedure INITIALIZATION(Glocal = (V,E))
2: for v ∈V : do in parallel
3: vcomponent← v
4: end for
5: end procedure
6: procedure RUN(thread:tid)
7: for v ∈V do in parallel
8: vmin← v
9: for u ∈ neighbors(v,Glocal) do

10: if u < vmin then
11: vmin← u
12: break
13: end if
14: end for
15: if u == vmin then
16: workitem w(u, u)
17: push(pq[tid], w)
18: end if
19: end for
20: HandleQueue(tid)
21: end procedure
22: procedure HANDLEQUEUE(thread:tid)
23: while true do
24: while !empty(pq[tid]) do
25: w← pop(pq[tid])
26: v←w.destination
27: p←w.priority
28: setadj← adjacencies(v, Glocal)
29: if min(setadj) > p then
30: for u ∈ setadj do
31: workitem w(u, p)
32: Send(w)
33: end for
34: end if
35: end while
36: if terminate() then
37: break
38: end if
39: end while
40: end procedure
41: procedure RECEIVE(workitem:w, thread:tid)
42: v←w.destination
43: p←w.priority
44: if p ¡ vcomponent(v) then
45: vcomponent(v)← p
46: push(pq[tid],w)
47: end if
48: end procedure
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6.4. Experiments & Results

We evaluate weak scaling performance of the proposed CC algorithm (pr-cc).

6.4.1. Implementation. We implemented the proposed algorithm on top of a MPI

wrapped lightweight messaging framework called AM++ [136]. The graph vertices are

equally distributed among participating nodes (also called 1D block distribution). The local

graph is represented using compressed sparse row format. In the local graph, each undirected

edge is represented using two directed edges. The priorities are encoded into the vertex

labels (so we do not need separate space for vertex priorities).

6.4.2. Experiment Setup. We ran our experiments on a Cray XC system that has 2

Broadwell 22-core Intel Xeon processors. Each node consists of 128 GB DDR4-2400 mem-

ory. The MPI implementation we used is Cray MPICH (version 7.4.4).

Preliminary results showed that to get the best performance results for all the algo-

rithms, we needed to run two processes per node (Because there are two sockets per node)

in MPI “thread multiple” mode.

6.4.3. Graph Input. For weak scaling experiments, we use R-MAT [23] synthetic graphs.

Two types of RMAT synthetic graphs were used. They are:

• RMAT-1: Graphs based on the current Graph500 [104] Breadth First Search bench-

mark specification with R-MAT parameters A = 0.57, B =C = 0.19 and D = 0.05.

• RMAT-2: Graphs generated based on the proposed Graph500 [56] SSSP bench-

mark specification with R-MAT parameters A = 0.50, B =C = 0.1 and D = 0.3.

6.4.4. Baseline Algorithms. We compare the performance of the proposed algorithm

with the Shiloach-Vishkin [123] algorithm. There are several distributed versions of Shiloach-

Vishkin with optimizations (See [38]). In addition to the main Shiloach-Vishkin algorithm,

we also compared the performance of our algorithm with an optimized SV algorithm. In

summary, we compared with following algorithms:

(1) Shiloach-Vishkin algorithm (sv) – This is the original Shiloach-Vishkin algorithm
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(2) Optimized Shiloach-Vishkin (svopt) – To reduce remote message communication

this algorithm first calculates connected components in local graphs and then ex-

ecute SV operations (tree hooking and short-cutting).

6.4.5. Weak Scaling Results. Weak scaling results for RMAT-1 graphs and RMAT-2

graphs are presented in Figure 6.5 and Figure 6.6.

In both cases (RMAT-1 & RMAT-2) sv and svopt algorithms perform better in shared

memory execution (when the number of cores is less than 16). However, in distributed

execution, the priority CC performed better. Also, the plots show that priority CC scaled

well compared to the other two algorithms.

SV algorithms exchanged nearly four times the messages than the proposed algorithm.

As an example, at scale 28 (16 * 32 cores), SV algorithm exchanged about 35668649973

messages and our algorithm exchanged about 8583349641 messages. Also, to process a

scale 28 graph, the SV algorithm executed 18 super steps (more than 18 barriers). Due to

these reasons, we argue that priority based algorithm is efficient.

Further, we see that the performance of SV algorithms with RMAT-1 input graphs is

better than RMAT-2 graphs.

6.5. Connected Components in AGM

The AGM model for the proposed CC algorithm is presented in Proposition 4. For

this algorithm, the workitem definition is similar to the workitem definition for SSSP. We

define WorkItemSetcc ⊆V ×N. The algorithm uses the component state to store highest pri-

ority value within a single component. The processing function (See Definition 14) has

one statement and this statement first checks whether incoming workitem priority is higher

than the priority stored inside component state. If the priority is higher, the component state

is updated with the incoming workitem priority and the change is relayed to lower prior-

ity neighbors. As discussed in the previous subsection, there are multiple ways to order

workitems for this algorithm. The “strict weak ordering relation” that does not perform

ordering is presented in Definition 15. Other orderings, such as by level or by a ∆ bucket
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FIGURE 6.5. CC Algorithms execution time for RMAT-1 graphs.
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FIGURE 6.6. CC Algorithms execution time for RMAT-2 graphs.
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defined on priority, are also possible. Each of these orderings instantiates a different AGM.

The AGM presented in Proposition 4 uses single equivalence class, a chaotic ordering.

DEFINITION 14. πcc : WorkItemscc −→ 2WorkItemscc

π
cc(w) =



{wk|wk ∈< wn[0] ∈ neighbors(w[0]) and

w[0]< wn[0] and

wn[1]←− w[1]>

< component(w[0])←− w[1]>,

< i f w[1]< component(w[0])>}

DEFINITION 15. <cc is a binary relation defined on WorkItemscc where, w1 ≮cc w2 nor w2 ≮cc

w1,∀w1,w2 ∈WorkItemscc.

PROPOSITION 4. CC Chaotic Algorithm is an instance of AGM where:

(1) G = (V,E,vmaps = {ρ},emaps = {}) is the input graph,

(2) WorkItems = WorkItemscc,

(3) Q = {component} is the state mapping and initially ∀i ∈V,component(i) = ρ(i),

(4) π = πcc,

(5) Strict weak ordering relation <wis = <cc,

(6) S = {<v, ρ(v)>} where v ∈V and ∀i ∈ neighbors(v), ρ(v)> ρ(i).

6.6. Summary

This chapter presented a priority-based connected components algorithm. The algo-

rithm without priority is quite simple, and priority and thread level ordering helps to re-

duce the amount of work while avoiding synchronization. The algorithm we presented is

asynchronous, label-correcting and un-ordered. The proposed algorithm performs better

in distributed execution as it minimizes synchronization and reduces remote messages.
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7

Luby’s Maximal Independent Set

The Maximal Independent Set (MIS) graph problem arises in many applications such as

computer vision, information theory, molecular biology, and process scheduling. The

growing scale of MIS problems suggests the use of distributed-memory hardware as a

cost-effective approach to providing necessary compute and memory resources. Luby

proposed four randomized algorithms to solve the MIS problem. All those algorithms are

designed focusing on shared-memory machines and are analyzed using the PRAM model.

These algorithms do not have direct efficient distributed-memory implementations. In this

chapter, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to

distributed-memory execution, and we evaluate their performance. We compare our re-

sults with the “Filtered MIS” implementation in the Combinatorial BLAS library for two

types of synthetic graph inputs.

7.1. Introduction

Let G = (V,E) be a graph where V represents the set of vertices and E represents the

set of edges in the graph. An independent set in G is a set of vertices in a graph such that

no two vertices in the set are adjacent. The largest independent sets (there may be more

than one) are called the maximum independent sets. Since finding a maximum independent

set is NP-hard, most applications settle for finding a maximal independent set. A MIS of

a graph is an independent set that is not a subset of any other independent set (see Fig-

ure 7.1). Finding a MIS is an important graph problem used in many applications, includ-

ing computer vision, coding theory, molecular biology and process scheduling. Although
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FIGURE 7.1. The gray nodes show a maximal independent set of this graph.
efficient MIS algorithms are well-known [30], the increasing scale of data-intensive appli-

cations suggests the use of distributed-memory hardware (clusters), which in turn requires

distributed-memory algorithms.

Luby’s Monte Carlo [91] MIS algorithms are often used for parallel MIS implementa-

tions. Luby MIS algorithms are designed focusing on shared memory machines and an-

alyzed using the PRAM model. Luby’s algorithms do not immediately lend itself to effi-

cient distributed memory parallel algorithms due to overhead incurred by synchronization

and distributed subgraph computations. In this chapter, we present distributed versions

of Luby’s Monte Carlo algorithms (Algorithm A and Algorithm B) that minimize these

overheads. Furthermore, we derive a variation of Luby(A) that avoids computing ran-

dom numbers in every iteration. All presented algorithms are implemented in the AM++

runtime [136] and their performance is evaluated. Our results show that the proposed

algorithms scale well in distributed settings. We also compare our results with the Fil-

teredMIS implementation in the Combinatorial BLAS library [20], and we show that our

implementations are several times faster compared to FilteredMIS algorithm.

7.2. Luby’s Algorithms

Luby’s algorithms are the most widely used parallel algorithms for finding a MIS in

shared memory. In his original publication, Luby discussed a general iterative scheme and

four particular variations based on it. The general iterative scheme is listed inAlgorithm 5.
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Algorithm 5 General Iterative Scheme in Luby MIS
Input: Graph G = (V,E)
Output: Maximal Independent Set Smis

1: Smis← /0
2: Sis← /0 . initializing the independent set
3: Gs(Vs←V,Es← E)
4: while Gs 6= /0 do
5: Sis← Select an independent set from Gs
6: Smis← Smis∪Sis
7: Vr← Sis∪{neighbors of vertices in Sis}
8: Er←{edges incident on vertices inVr}
9: Gs← Gs(Vs← (Vs−Vr),Es← (Es−Er))

10: end while
In every iteration, the general iterative scheme selects a non-empty independent set and

merges it to the output (Smis). Then, the selected independent set and its neighbors are

removed from the input graph, and the resulting subgraph is fed into the scheme for the

next iteration (Line 7–Line 9). This process is repeated until the resulting subgraph is

empty. In every iteration, the general iterative scheme generates a new independent set.

Luby proved that the union of all those independent sets is a maximal independent set.

To select an independent set from a subgraph in an iteration, Luby proposed two

Monte Carlo algorithms: Select A and Select B. Select B is further enhanced to create two

more variations, Select C and Select D. All four of those variations use randomization to

calculate an independent set. Select algorithms A, B, and C are non-deterministic, while

Select D is deterministic. In this chapter, we focus on Select algorithms A and B (since C

and D are variations of B). Select A and Select B algorithms are summarized in Table 7.1.
Select A Select B
1. Assume all the vertices in the sub-
graph are independent
2. Assign random values to vertices
in Vs
3. Calculate the independent set
based on assigned random values

1. Assume vertices that satisfy the coin ran-
dom variable test are independent
2. Calculate the independent set based on the
degree distribution of the subgraph

TABLE 7.1. Independent set selection criteria for Select A and Select B algorithms

Select A is the simplest of the algorithms. It considers all the vertices (Vs) in the sub-

graph to be in an independent set. Then, it assigns a random number, r (1 ≤ r ≤ |Vs|4) to
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each vertex in the subgraph. Then, for every edge in the subgraph (edges in Es), Select A

removes the vertex in the edge that has the greater random value.

Unlike Select A, Select B does not consider all vertices in the subgraph to be in the

independent set in an iteration. Instead, Select B uses a random variable (coin) to decide

whether a vertex in the subgraph should be selected to be in an independent set. The

value of the coin is determined based on a probability distribution defined using degree

distribution of the subgraph. More precisely, if d(v) is the degree associated with a vertex

v ∈ V ′, then coin(v) = 1 with probability 1/2d(v). If d(v) = 0, then coin(v) is always 1. For

more details about Algorithm B, we refer the reader to Luby’s original publication in [91].

7.2.1. Luby’s Algorithms in Distributed Memory. The Luby algorithms do not lend

themselves directly to efficient distributed-memory parallel implementations. Luby’s al-

gorithms are designed focusing on shared memory machines and are analyzed using the

PRAM model. In the PRAM model, all processors need to synchronize after reading from

the shared memory and also before writing to the shared memory. A natural way to extend

a shared-memory Luby algorithm to distributed memory is to use the BSP approach. In

BSP [133], shared memory operations can be converted to compute, communication and

barrier synchronization phases. However, this approach results in many barrier synchro-

nization phases.

Another issue is that the “general iterative scheme” (algorithm 5) depends on subgraph

computations. That is, in every iteration, the algorithm constructs a new subgraph the by

removing vertices and edges of the independent set calculated in the current iteration from

the graph. Constructing a subgraph in every iteration is inefficient in distributed memory

as it involves communication and synchronization even if the subgraph is maintained im-

plicitly through vertex masking.

In addition, the Select A algorithm requires a new choice of random numbers in every

iteration. The range of the numbers depends on the number of vertices remaining in the

subgraph. Therefore, the random number generation requires a reduction over the number
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of vertices in the subgraph and a barrier in every iteration. Furthermore, random number

generation incurs a significant computational overhead.

In the next section, we discuss how we extend Luby’s algorithms to distributed execu-

tion while avoiding the drawbacks discussed above. In the proposed algorithm, the over-

head of barrier synchronization phases are minimized by overlapping computation and

communication. The subgraph computation is achieved through vertex filtering. How-

ever, vertex filtering cripples the ability to iterate over the graph data structure in parallel.

Therefore, in our implementation, we use a parallel data structure. We also present a vari-

ation of Select A algorithm that avoids random number generation in each iteration and

uses random numbers generated initially.

7.3. Distributed Memory Parallel Luby Algorithms

The proposed distributed-memory parallel Luby algorithms use a 1D distribution to

distribute the graph vertices among participating ranks. Every rank gets a subset of ver-

tices and an edge subset relevant to the vertices. Within a rank, a vertex subset and its

associated edge subset is represented using a local graph representation (Glocal = (V l,E l)).

A vertex is “owned” by a rank and vertices owned by different ranks communicate by

passing messages. Message passing communication between ranks is designed based on

BSP processing, but with overlapped communication and computation for improved effi-

ciency.

7.3.1. Distributed General Iterative Scheme. The distributed general iterative scheme

(algorithm 6) requires subgraph computation. Though explicit subgraph computation may

be practical in sequential and shared-memory parallel environments, it is inefficient in dis-

tributed memory due to overheads of creating and distributing a new subgraph at every

iteration. Equivalent distributed subgraph computation functionality can be achieved with

vertex filtering (i.e., apply a filtering predicate to indicate whether a vertex is to be consid-

ered in the current computation). Although with vertex filtering more edges then strictly

necessary are traversed in every iteration, the increased parallel efficiency outweighs the

cost of the unnecessary traversals.
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Algorithm 6 Distributed General Iterative Scheme

1: procedure LUBYITERATE(Glocal,selectfn)
2: buffer←{}
3: delete←{}
4: while there are NIL vertices in G do
5: selectfn(&buffer,&delete)
6: epoch {
7: for each Vertex v in buffer in parallel do
8: if v is not in delete then
9: mis[v]← IN

10: for each u in adjacencies(v,Glocal) do
11: Send(u,OUT)
12: end for
13: end if
14: end for
15: }
16: end while
17: end procedure
18:
19: procedure Receive(v : Vertex,s : State)
20: mis[v]← s
21: end procedure

To alleviate the overhead of subgraph computations in distributed memory, we use

two data structures:

(1) An append buffer (buffer) – for efficient parallel access; and

(2) A set structure (delete set).

These two data structures are created by the general iterative scheme and are passed into

a specific Select (A or B) algorithm. The Select algorithm is responsible for populating the

append buffer and delete set. When the Select algorithm decides a vertex is a candidate

to be in the MIS, it adds the vertex to the buffer. Next, after buffer contains the initial MIS

candidate vertex set, all vertices that have a neighbor with a lesser random value assigned

to it, are placed in the delete set. The general iterative scheme traverses the append buffer

in parallel and checks whether a vertex is in the delete set; if the vertex is not present

in the delete set, then the vertex is added to the result MIS. To reduce the contention

when operating on the delete set we implement delete set as a collection of sets, where

each thread maintains a set local to the thread. Insertion to a delete set is local to the
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invoking thread. When querying an element from the delete set, we first check whether the

element resides in the thread-local set, and then we search for the element in sets belonging

to other threads. During the search phase the sets are only read, so they can be safely

shared between threads. The two-step design (buffer and then delete set) limits contention

between threads to the low-overhead insert contention on the append buffer.

During computation, a vertex can be in one of three states (stored in a property map)

(1) IN– vertex is in MIS;

(2) OUT– vertex is not in MIS; and

(3) NIL– vertex is not yet processed.

Initially, all the vertices are in state NIL. When the algorithm terminates, all vertex states

are changed either to IN or OUT.

Whether a vertex state should be changed from NIL to IN or NIL to OUT is decided

within the general iterative scheme (LubyIterate in Algorithm 6). First, the general iterative

scheme invokes the appropriate “Select” algorithm select f n (SelectA or SelectB). The specific

select algorithm is responsible for populating the append buffer and the delete set (Line 5).

The general iterative scheme iterates through the append buffer in parallel and checks

whether a vertex is present in the delete set (Lines 7 to 14). If a vertex is not in the delete

set then that vertex state is updated to IN (Line 9). When a vertex state is changed to

IN state, all its neighbors’ states are to changed to OUT state (11). The Send operation

determines to which rank the message should be sent based on the destination vertex and

the graph distribution. Messages sent through Send are received in the Receive (Lines 19

to 21) function. Traversing through vertices in the append buffer and updating vertex

states takes place within a single super-step (i.e., within a single epoch).
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Algorithm 7 Distributed SelectA

1: procedure SELECTA(Glocal,ref abuffer,ref deleteset)
2: localcount← 0
3: globalcount← 0
4: for each Vertex v in Glocal in parallel do
5: if mis[v] == NIL then
6: localcount← (localcount+1)
7: end if
8: end for
9: globalcount← Reduce(localcount,SUM)

10: random← RandomDist(1,globalcount4,Seed())
11: /*Assign random values to vertices in NIL state*/
12: for each Vertex v in Glocal in parallel do
13: if mis[v] == NIL then
14: π[v]← random.Value()
15: abuffer.add(v)
16: end if
17: end for
18: /*Use random values to remove conflicting vertices*/
19: epoch {
20: for each Vertex i in abuffer in parallel do
21: for each j in adjacencies(v,Glocal) do
22: if u belongs to Glocal then
23: if π[i]>= π[ j] then
24: deleteset.add(i)
25: else
26: deleteset.add( j)
27: end if
28: else
29: Send( j, i,π[i],COMPARE)
30: end if
31: end for
32: end for
33: }
34: end procedure
35: /*Every Send call invokes a Receive*/
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36: procedure Receive(j:Vertex, i:Vertex, irnd:Real, act:Action)
37: if act == COMPARE then
38: if irnd >= π[ j] then
39: Send(i, j,π[ j],REMOV E)
40: else
41: deleteset.add( j)
42: end if
43: else
44: if act == REMOVE then
45: deleteset.add( j)
46: end if
47: end if
48: end procedure

7.3.2. Distributed Select A. Select A (Luby(A)) algorithm takes a local graph represen-

tation, an append buffer, and a delete set. Select A algorithm is listed in Algorithm 7. Glocal

is the local graph representation, abuffer represents the append buffer and deleteset repre-

sents the delete set. Select A algorithm first calculates the number of vertices in NIL state

using a global reduction (Lines 4 to 9). Then, for each vertex in NIL state, a random value,

k (1 < k < globalcount4), is assigned (Lines 12 to 17). When generating random values, a

combination of rank id and thread id is used to generate a unique random value seed for

every thread (Seed() on Line Cref10). Random values are stored in a property map; a rank

only stores random values for vertices in its local graph. While assigning a random value

to each local vertex in a NIL state, Select A algorithm inserts those vertices to the append

buffer (Line 15).

In the next phase, the algorithm traverses through vertices in the append buffer in

parallel and inserts adjacencies with higher random values that are in NIL state to the

delete set (Lines 20 to 32). If the adjacent vertex does not belong to Glocal , then a message

is sent to the appropriate locality (Line 29), including the source vertex id i and its random

value. The rank that owns the destination vertex j checks whether the received random

value is less than the random value of j. If so, j is added to the delete set, otherwise a

message is sent back to i to add i to the delete set. The first message is denoted using the

action COMPARE and the second action is represented using the action REMOVE. Every
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Send call corresponds to a Receive function (Lines 36 to 48) invocation. At the end of the

execution of epoch in Lines 19 to 33, vertices in the append buffer but not in the delete set

represent an independent set.

7.3.3. Select AV (A variation of Select A). The Select A algorithm generates random

numbers in every iteration. Random number generation is computationally expensive,

also, to generate random numbers we need to calculate the total subgraph vertex set size

(across all distributed ranks) which incurs additional communication overhead due to dis-

tributed reduction and barrier synchronization.

Select AV (Luby(AV)) is almost same as Select A, except that, we do not generate ran-

dom numbers to calculate an independent set. Instead, we use graph representation vertex

IDs to break the symmetry and calculate an independent set. In other words, π[i] = i ∀i∈Vs,

where Vs represents the vertex set of a subgraph. This method depends on the distribution

of vertex identifiers in the graph data structure, but it works well with our representation

which randomly permutes vertices before the algorithm begins.
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Algorithm 8 Distributed SelectB

1: procedure SelectB(Glocal,ref abuffer,ref deleteset)
2: degree←{} /*Calculate vertex degrees relative to the subgraph*/
3: epoch {
4: for each Vertex v in Glocal in parallel do
5: if mis[v] == NIL then
6: for each u in adjacencies(v,Glocal) do
7: if u belongs to Glocal then
8: if mis[u] == NIL then
9: degree[v]← (degree[v]+1)

10: end if
11: else
12: Send1(u,v, ISNIL)
13: end if
14: end for
15: end if
16: end for
17: }
18: /*Build independent set based on coin value*/
19: for each Vertex v in Glocal in parallel do
20: if coin(v,degree[v]) == 1 then
21: abuffer.add(v)
22: end if
23: end for /*Remove conflicting vertices*/
24: epoch {
25: for each Vertex i in abuffer in parallel do
26: for each j in adjacencies(v,Glocal) do
27: if j belongs to Glocal then
28: if j is in abuffer then
29: if degree[i]⇐ degree[ j] then
30: deleteset.add(i)
31: else
32: deleteset.add( j)
33: end if
34: end if
35: else
36: Send( j, i,degree[i],COMPARE)
37: end if
38: end for
39: end for
40: }
41: end procedure
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42: /*Every Send1 call invokes a Receive1
*/

43: procedure Receive1(u:Vertex, v:Vertex, act:Action)
44: if act == ISNIL then
45: if mis[u] == NIL then
46: Send1(v,u,NILTRUE)
47: end if
48: else
49: if act == NILTRUE then
50: degree[u]← (degree[u]+1)
51: end if
52: end if
53: end procedure
54: /*Every Send call invokes a Receive*/
55: procedure Receive(j:Vertex, i:Vertex, irnd:Real, act:Action)
56: /*Same as the Receive procedure in Algorithm 7*/.
57: end procedure

7.3.4. Distributed Select B. Select B (or Luby(B)) algorithm does not add all the ver-

tices in NIL state to the append buffer, instead it only adds a subset of vertices in NIL

state. The subset is calculated based on the random variable coin. The random variable

coin has two values 0 and 1 that are assigned based degree distribution of vertices. There-

fore, Select B algorithm first calculates the degree of each vertex relative to the subgraph.

Then, the algorithm selects subset vertices in NIL state for an independent set based on

the coin value. Afterwards, the algorithm checks in parallel if any adjacent vertices were

selected. If so, the algorithm uses degrees of vertices to resolve the conflict and remove

any non-independent vertices. Algorithm pseudocode for Select B algorithm is presented

inAlgorithm 8.

Calculating vertex degrees in the current subgraph requires communicating with re-

mote ranks. Lines 4 to 16 show the degree calculation. If an adjacent vertex is not in cur-

rent locality, the algorithm sends a message to the remote locality to check the status of the

adjacent vertex (LineLine 12), using the ISNIL action to query the status of the adjacent ver-

tex. These messages invoke the Receive1 procedure on the remote locality (Lines 43 to 53).

If the adjacent vertex is in the NIL state, the remote rank sends back a reply NILTRUE.
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Lines 19 to 23 show how Select B algorithm invokes coin, a random variable, to select

a subset of vertices as a candidate for an independent set. The coin function takes a vertex

and its degree to decide whether the random variable value is 1 or 0. If the coin function

returns 1, the vertex is added to the append buffer.

After adding a subset of vertices in the subgraph to the append buffer, Select B al-

gorithm iterates through the content in the append buffer in parallel. If a vertex in the

append buffer has an adjacent vertex that is also in the append buffer, then the vertex with

the smaller degree is removed. The vertex that has a lower degree is added to the delete

set (Lines 25 to 39). If the adjacent vertex is in a remote locality a message is sent (Line-

Line 36). The receive code to handle messages sent (LineLine 36) is similar to the Receive

procedure in Select A (Lines 36 to 48, in Algorithm 7). Like in Select A, when Select B

finishes executing the epoch in Lines 24 to 40, vertices in the append buffer but not in the

delete set represents an independent set.

7.4. Experiments & Results

7.4.1. Implementation. The proposed algorithms are implemented on top of an active

messaging framework AM++ [136], using pthreads for in-node threading.

Graph vertices are equally distributed among participating nodes (1D block distribu-

tion). The local graph is represented using compressed sparse row (CSR) format. Every

undirected edge is represented using two directed edges.

Algorithm implementations do not require pre-processing of inputs and can deal with

parallel edges and self-loops (common artifacts in synthetic inputs). Whenever there is

code that iterates through adjacencies of a vertex, the algorithm inserts adjacent vertices to

a local set. The body of the loop is executed only if the adjacent vertex is not present in the

set (See the code below).

1: ...

2: adjacentvertices←{}

3: for each u in adjacencies(v,Glocal) do

4: if (u! = v) then . /*Exclude self-loops*/
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5: if u not in adjacentvertices then . /*Exclude parallel edges*/

6: adjacentvertices.insert(u)

7: ...

8: end if

9: end if

10: end for

7.4.2. Experimental Setup. We ran our experiments on a Cray XC system with 2 Broad-

well 22-core Intel Xeon processors and 128 GB DDR4-2400 memory per node. For scaling

results, we used only up to 32 cores per node to provide uniform scaling. We used Cray

MPICH MPI (version 7.4.4) and GCC 6.3.0. We used two processes per node (one per

NUMA domain), and we used MPI in thread-multiple mode.

7.4.3. Graph Input. We evaluate the MIS algorithms in-terms of weak scaling and strong

scaling. We use RMAT [23] synthetic graphs. Two types of RMAT synthetic graphs are

used. They are:

• RMAT-1: Graphs based on the current Graph500 [104] Breadth First Search bench-

mark specification with RMAT parameters A = 0.57, B =C = 0.19 and D = 0.05.

• RMAT-2: Graphs generated based on the proposed Graph500 [56] SSSP bench-

mark specification with RMAT parameters A = 0.50, B =C = 0.1 and D = 0.3.

Both types of graphs have 16 undirected edges per vertex. Strong scaling experiments

were carried on RMAT-1 and RMAT-2 scale 25 graphs (largest possible before memory

exhaustion).

7.4.4. Weak Scaling Results. For weak scaling we compare our implementation to

FilteredMIS [19] implementation in the CombBLAS [20] library. The FilteredMIS algorithm

runs Luby(A) with edge filtering. However, implementation presented in this chapter

does not perform any edge filtering. We show FilteredMIS results with 0% and 50% edge

filtering where no edges and half of the edges are ignored, respectively. The more edges

are ignored, the better FilteredMIS performs.
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FIGURE 7.2. Weak scaling results of MIS algorithms for RMAT graphs, in-
cluding FilteredMIS. The shaded area shows the shared memory execution.

Figure 7.2 shows weak-scaling results for of Luby(A), Luby(AV), Luby(B), and Filtered-

MIS for RMAT-1 and RMAT-2 graph inputs. For both graph inputs distributed Luby al-

gorithms presented in this chapter outperform CombBLAS,FilteredMIS (for both 50% and

100% edge filtering).

Results from distributed execution of FilteredMIS show a zig-zag pattern (when cores

> 32). The CombBLAS version we use only supports a square number of tasks; therefore,

when executing on a non-square number of nodes (2, 8, 32) we used two tasks per node to

make the execution on a square number of processes. When the number of tasks per node

is two, FilteredMIS execution time decreases and when the number of tasks per node is 1,

the execution time increases. We enabled multi-threading in CombBLAS so the tasks can

take advantage of multiple cores. We observed that CombBLAS performed the worst with

one task per core (no multi-threading).

As per Figure 7.2, Luby(B) performs better in shared memory (when, cores < 32) for

both graph inputs. Unlike Luby(A), Luby(B) does not consider all vertices in the subgraph

to be in the initial approximation to the independent set. Luby(B) has a choice step, where
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it calculates a subset from the subgraph vertices based on the probability distribution (See

Section 7.2, “coin” function). Since Luby(B) selects subset from the subgraph vertices,

Luby(B) is able to calculate an independent set faster than Luby(A) in an iteration. On

the other hand, Luby(A) does not have a choice step and it considers all the vertices in

the subgraph as a candidate for an independent set. The data statistics we collected shows

that Luby(A) spends most of its time in calculating an independent set in the first iteration,

especially in shared-memory execution. For example, the statistics in Table 7.2 are collected

for scale 20 RMAT-1 graph on 2 cores. Other scales behave in the same way.
Luby(A) Luby(B)

Exec. Time (sec.) 7.13 4.17
Time for 0th iteration (sec.) 6 0.01
No.of Iterations 5 20
Vertices in 0th iteration 1048576 517394
Deleted Set Sz. 917623 2043

TABLE 7.2. Runtime statistics for Luby(A) and Luby(B) on RMAT-1, Scale
20 graph on 2 cores.

Luby(A), however, converges much faster than Luby(B). As shown in Table 7.2, Luby(A)

takes 6 iterations to terminate while Luby(B) takes 20 iterations. When the number of it-

erations are higher, the overhead of global synchronization also increases. At scale 24

(when cores = 32) we see a sudden increase in Luby(B)’s runtime. This is because at scale

24 execution runs in 2 processes and the overhead of communication become significant.

The performance of Luby(B) is more affected at scale 24 than the performance of Luby(A).

Since the number of iterations are higher in Luby(B), synchronization overhead is more

important in Luby(B) than in Luby(A).

The difference between Luby(A) and Luby(AV) are not prominent. Luby(AV) is able

to achieve a slight improvement over Luby(A) in distributed execution. This is mainly

because Luby(AV) avoid the need to calculate vertex set size using a global reduction and

also avoids the need to generate random numbers.

All the Luby algorithms (A, AV, B) presented in this chapter do not show perfect weak

scaling performance in shared memory due to the contention created on data structures
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FIGURE 7.3. Strong scaling results of MIS algorithms for RMAT-1 and
RMAT-2, Scale 25 graph inputs. Shaded region shows the shared memory
execution.

with the increasing number of threads. However, we see good weak scaling in distributed

memory for all Luby (A, AV, B) algorithms.

7.4.5. Strong Scaling Results. For strong scaling experiments, we ran MIS algorithms

on RMAT-1 and RMAT-2 scale 25 graphs. To have better understanding about how algo-

rithms scale relative to each other, we measured Relative Speedup,= Tre f 1
Tn

i.e., the ratio of

the execution time of the fastest sequential algorithm, Tre f 1 and the parallel execution time

on n processing elements, Tn.

Figure 7.3 shows the strong scaling results of MIS algorithms presented in this chapter

for the graph inputs discussed above. Due to synchronization overhead discussed in the

context of weak-scaling results, Luby(B) shows better speedup in shared memory, but in

distributed memory Luby(B) speedup drops at higher scales due to higher synchronization

overhead.

7.5. Summary

Most of the existing research on MIS focuses on theoretical analysis than practical im-

plementation. Further, the few practical implementations mostly implement Luby’s MIS
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algorithms. Luby’s MIS does not immediately extend as efficient distributed-memory par-

allel algorithm due to synchronization overheads and subgraph computation overheads.

In this chapter we presented distributed versions of parallel Luby’s algorithms. The

algorithms we propose minimize the synchronization overhead by overlapping communi-

cation and computation and minimizes the subgraph computation overhead using vertex

filtering and by maintaining parallel data structures. Our results show that the algorithms

we present are several times faster than existing MIS algorithms.
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8

FIX MIS

The growing scale of graph data suggests the use of distributed memory hardware as a

cost-effective approach to providing necessary compute and memory resources. Existing

distributed memory parallel MIS algorithms rely on synchronous communication and use

techniques such as subgraph computations. In this chapter, we present an asynchronous

distributed-memory parallel graph algorithm that relies on a virtual directed acyclic graph

(DAG) that is created during the algorithm execution. We introduce two additional algo-

rithms that save computations by ordering generated work. The first algorithm applies or-

dering globally to reduce computations, and the second algorithm applies ordering locally

at the level of threads to minimize the synchronization overhead. We use two different

implementations of Luby’s algorithm variants as baseline to compare the performance of

the presented algorithms:

(1) vertex-centric Luby A and Luby B implementations, and

(2) the CombBLAS linear-algebra Luby A implementation.

Results show that proposed algorithms outperform both implementations of Luby algo-

rithms, especially in distributed execution. Furthermore, we show that for low-diameter

graphs the algorithm that applies global ordering scales better than other algorithms and

for high diameter graphs the original asynchronous algorithm and thread-level ordering

algorithm show better performance.
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FIGURE 8.1. The gray nodes show a maximal independent set of this graph.
8.1. Introduction

Existing research on parallel algorithms for the MIS problem focuses primarily on the-

oretical analyses (most often in shared memory settings), and this provides incomplete in-

sight into real-world performance. The available distributed-memory parallel algorithms

for MIS are based on Luby’s randomized MIS [91] algorithms. Luby’s algorithms were

developed primarily focusing on shared memory; they use techniques that do not scale

to distributed-memory. In this chapter we propose an asynchronous distributed-memory

parallel MIS algorithm based on a DAG induced on the input graph, using unique ran-

domly assigned vertex identifiers. FIX, the algorithm we propose, can further reduce the

number of computations by arranging the computations in a particular order. We present

two different orderings of FIX, FIX-Bucket and FIX-PQ, and we experimentally evaluate

their performance against two different implementations of distributed-memory parallel

Luby’s algorithms.

The FIX algorithm we present in this chapter is an asynchronous distributed-memory

parallel algorithm. It maintains a state for every vertex, indicating whether the vertex is in

MIS (FIX1) or not in MIS (FIX0). FIX creates a virtual DAG based on randomly assigned

vertex identifiers. Processing starts from the sources of this DAG, and state changes are

propagated towards the sinks of the DAG. We show that the algorithm terminates, and

that at termination vertices that have the state FIX1 form an MIS.

The correctness of the FIX algorithm does not depend on the order of changes to vertex

states, and the execution can proceed in any of the correct orders (the algorithm execution
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is not deterministic, but the result is). We derive two algorithms from the basic FIX algo-

rithm by applying the following orderings:

(1) Order work based on where it originates – First process work originating from

vertices in FIX1 and then process work originating from vertices in FIX0 (FIX-

Bucket algorithm);

(2) Order work based on state and then order work based on the monotonic distance

from the vertex that started the work (source of the DAG). In other words, the

work that is in FIX1 is processed immediately and the work that is not in FIX1

is processed based on the distance from the source. Vertices that have smaller

distance from the source gets priority over vertices that have higher distance from

the source when the work is in FIX0 state (FIX-PQ algorithm).

We show that above two orderings reduce the number of computations relative to the

original FIX algorithm.

The performance of the proposed FIX algorithm (including the two ordering vari-

ations) is evaluated and compared with Luby’s algorithms for both weak scaling and

strong scaling. Direct implementations of the original Luby algorithms are inefficient in

distributed-memory runtimes, mainly because of subgraph computation, random num-

ber generation, and synchronization. [73] presented an efficient implementation of two

of Luby’s seminal algorithms with overlapping computation and communication. In ad-

dition, CombBLAS [20] has an implementation of Luby’s algorithm that is implemented

using linear algebra primitives. We use these two implementations as our baselines to

compare the performance of the FIX algorithms.

Our results include two types of synthetic graph inputs to evaluate the weak scaling

performance and two synthetic graphs and two natural graphs (one with a small diame-

ter and one with a higher diameter) to evaluate the strong scaling performance. Results

show that the three FIX algorithms outperform Luby’s algorithms implemented in [73]

and CombBLAS [20]. Furthermore, we show that for low-diameter connected graphs, the
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FIX-Bucket algorithm has better performance than FIX and FIX-PQ, and for higher di-

ameter graphs, the FIX and FIX-PQ algorithms have better performance than FIX-Bucket

algorithm.

In summary, the main contributions of this chapter are:

(1) Development and characterization of three distributed-memory parallel MIS al-

gorithms;

(2) Comparison of weak scaling results to two different implementations of distributed

Luby algorithms;

(3) Analysis of results showing that for low-diameter graphs FIX-Bucket outperforms

other algorithms and that for high-diameter graphs the FIX or the FIX-PQ algo-

rithm outperforms other algorithms.

8.2. FIX Algorithm

The FIX algorithm begins by generating a directed acyclic graph (DAG) on the input

graph G. First, every vertex is assigned a unique random identifier. Every undirected edge

(v,u) is given a direction based on the identifiers of v and u, where the vertex with the

greater identifier becomes a successor, and the vertex with the lesser identifier becomes a

predecessor (see fig. 8.2). The vertices without predecessors are the sources of the induced

DAG, and the vertices without successors are the sinks.

The FIX algorithm is shown in algorithm 9. FIX has three main subroutines: Initialize,

Begin, and Receive. Every Send call in the algorithm invokes the Receive subroutine. The

FIX algorithm maintains a state per each vertex. The state is represented using the maps

mis and count, where the mis map represents the membership in MIS (FIX0 indicates not in

MIS, and FIX1 indicates in MIS), and the count map represents the number of predecessors

with state FIX1. In Initialize, the mis state of every vertex is initialized to UNFIX, indicating

that the membership of the vertex in the MIS is not decided yet, and the count state is

initialized to 0, indicating that no predecessors are in MIS. The FIX algorithm first adds

source vertices to the MIS (lines 1 to 8) by changing their state to FIX1. Upon changing the

state of a source, a message is sent to its successors to notify them of the change.
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The initial messages sent from Begin are handled by Receive. The

Receive routine is a message handler that is implicitly invoked per every

Send call. If a message comes from a vertex with a state of FIX1, the

state of the receiving vertex u is immediately changed to FIX0, and all

successors of v are notified of this change (lines 1 and 5). If a mes-

sage comes from a vertex in the FIX0 state, the count of predecessors

with FIX0 state is incremented. If all predecessors have the FIX0 state

(line 8), then the vertex joins the MIS. Its state is set to FIX1, and all of

its neighbors are notified. The algorithm traverses the DAG induced

on the input graph G by following the predecessor and successor links,

and it terminates when the states of all sinks are set to FIX0 or FIX1, or, equivalently, when

there are no vertices left in the state UNFIX.

At termination, vertices with state FIX1 form an MIS. To prove this, we first need to

show that at termination, all vertices must either be in FIX1 or FIX0 state. Suppose there

is a vertex, v, in the UNFIX state at termination. The vertex v can be in any one of the

following 4 situations within the induced DAG:

(1) v has neither predecessors nor successors;

(2) v has predecessors but not successors;

(3) v has no predecessors but it has successors; or

(4) v has both predecessors and successors.

In cases 1 and 3 the Begin routine promotes the state of v to FIX1 (line 3 in algorithm 9). In

cases 2 and 4, if v is in UNFIX state, then, there is no predecessor with state FIX1 because

of the message sent on line 11 in algorithm 9. A message sent in line 11 calls the Receive

procedure and it assures successor of a FIX1 vertex is in FIX0 (lines 1 and 2). Then, either

all the predecessors must be in the FIX0 state, or there is at least one predecessor that is

in the UNFIX state. If all the predecessors are in FIX0, v must be in FIX1 (lines 8 and 9 in

algorithm 9). Since we assume v is in the UNFIX state, there must be at least one prede-

cessor in the UNFIX state. Let this predecessor of v be u. We can make a similar argument
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Algorithm 9 FIX Algorithm
Initialize G = (V,E):

1: for each v in V do
2: mis[v]← UNFIX, count[v]← 0
3: end for

Begin G = (V,E):
1: for each v in V do
2: if v is a source then
3: mis[v]← FIX1
4: for each u in Successors of v do
5: Send(u,FIX1)
6: end for
7: end if
8: end for

Receive u,vstate:
1: if vstate == FIX1 then
2: mis[u]← FIX0
3: for each us in Successors of u do
4: Send(us,FIX0)
5: end for
6: else
7: count[u]← count[u]+1
8: if count[u] == |Predecessors| then
9: mis[u]← FIX1

10: for each us in Successors of u do
11: Send(us,FIX1)
12: end for
13: end if
14: end if
for u and can conclude that u has a predecessor in the UNFIX state. We continue the ar-

gument until we reach a vertex without predecessors (since the DAG is finite and acyclic,

we will reach a source level vertex). However, by cases 1 and 3, we know that a vertex

without predecessors will be promoted to FIX1. Therefore, the sources of the DAG (they

are also predecessors) cannot be in the UNFIX state. Therefore, our assumption that there

is a vertex in UNFIX state after termination causes a contradiction, and we can conclude

that every vertex is in either FIX0 or FIX1 after algorithm termination.

Furthermore, none of the vertices that are in the state FIX0 can be changed to FIX1

because a vertex’s state transitions to FIX0 if, and only if, it has a neighbor that is in FIX1.

Therefore, the set of vertices in the FIX1 state cannot be expanded any further. Hence, a set

of vertices that is in the FIX1 state is an MIS.
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Compared to Luby’s algorithms, the FIX algo-

rithm avoids the overhead of random number gen-

eration in every iteration by assigning a random per-

mutation of identifiers to vertices. In addition, FIX

also avoids the need to maintain a subgraph for ev-

ery iteration. Maintaining a subgraph requires O(n)

space; hence, compared to Luby’s algorithms, FIX is

space efficient.

8.2.1. Distributed FIX. The distributed imple-

mentation of FIX divides vertices equally among

participating processes and stores those vertices and

their adjacencies locally. Glocal represents the local

subgraph. Every rank runs some number of threads,

and distributed messages are exchanged between ranks within epochs.

An epoch is a code region where distributed programs can exchange messages. A

global barrier is executed at the start of an epoch and at the end of an epoch. Computation

and communication can be overlapped within epochs.

Our distributed implementation is listed in algorithm 11. The implementation follows

the single program, multiple data (SPMD) paradigm, in the sense that every rank runs the

same program. Every rank maintains two per-vertex counter maps of counters (the coun-

ters are indexed by the vertex identifier). The first counter, predecessor count (predcount),

counts the number of predecessors per each vertex and this is calculated at the initial-

ization of the algorithm (line 19). The second counter, predecessor completed count (predcc)

keeps track of the number of predecessors that were moved to FIX0 state. This counter

is updated during algorithm execution. These two counters are used to identify whether

all the predecessors of a vertex have been moved to FIX0 state. For a given vertex, v,

predcount[v] = predcc[v] means that all the predecessors of the vertex v are in FIX0, and v can

be set to FIX1.
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The algorithm execution starts with the FIXMIS (lines 16 to 27) procedure. Inside an

epoch, each rank goes through vertices in the local graph in a parallel thread and changes

the state of vertices that have a zero predcount. When a vertex’s state is changed, the vertex

notifies all of its successors (line 22). The notification implicitly invokes the Receive proce-

dure, as in algorithm 9. The Receive function first checks whether the destination vertex’s

state is already changed to either FIX1 or FIX0 (Line 29). If not, it checks whether the source

vertex’s state has been changed from UNFIX to FIX1. If so, the receiving vertex’s state is

changed to FIX0, and the receiving vertex notifies, in turn, all of its successors (Lines 32

to 38). If the source vertex’s state is changed from UNFIX to FIX0, the receiving vertex

increments its predcc counter. Then, if all of the receiving vertex’s neighbors with higher

priorities are transferred to FIX0 state (i.e., if predcc = predcount), the receiving vertex is

promoted to FIX1 state (lines 28 to 52).

In our particular implementation of the FIX algorithm, we did not use a thread-level

distribution of vertices. Therefore, counters and MIS states can be updated by two threads

at the same time. To avoid race conditions we use atomic operations.

As is, the algorithm 11 suffers from load imbalance within threads in shared mem-

ory execution. The algorithm processes each vertex in parallel (line 18), and some of

the vertices, that threads process are not sources (i.e., they do not satisfy the condition

predcount[v] == 0, Line 19). Because of that, those threads do little work compared to

threads that process sources.

To balance the load between threads, we pre-calculate the source vertices and insert

them into an append buffer, and FIXMIS procedure iterates over the sources instead of all

vertices in the graph. This way we make sure that every thread processes about the same

number of source vertices. The modified distributed MIS with better thread level load

balance is given in algorithm 10 (lines 5 to 9 and line 18).
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Algorithm 10 Modified FIX for better load balance between threads
1: ...
2: procedure INITIALIZE(Glocal)
3: for each Vertex v in Glocal in parallel do
4: ...
5: for each u in adjacencies(v,Glocal) do
6: if (u < v) then
7: predcount[v]← predcount[v]+1
8: end if
9: end for

10: if predcount[v] == 0 then
11: appendbuffer.insert(v)
12: end if
13: end for
14: end procedure
15:
16: procedure FIXMIS(Glocal)
17: ...
18: for each Vertex v in appendbuffer in parallel thread do
19: ...
20: end for
21: ...
22: end procedure
23: ...
Algorithm 11 Distributed Memory Parallel FIX Algorithm

1: predcount←{0...0}
2: predcc←{0...0}
3: procedure INITIALIZE(Glocal)
4: for each Vertex v in Glocal in parallel do
5: mis[v]←UNFIX
6: predcount[v]← 0
7: predcc[v]← 0
8: for each u in adjacencies(v,Glocal) do
9: if (u < v) then

10: predcount[v]← predcount[v]+1
11: end if
12: end for
13: end for
14: end procedure
15:
16: procedure FIXMIS(Glocal)
17: epoch {
18: for each Vertex v in Glocal in parallel thread do
19: if (predcount[v] == 0) then
20: mis[v]← FIX1
21: for each u in adjacencies(v,Glocal) do
22: Send(u,v,mis[v])
23: end for
24: end if
25: end for
26: }
27: end procedure
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28: procedure RECEIVE(destv, srcv, srcstate)
29: if mis[destv]! =UNFIX then
30: return
31: end if
32: if srcstate == FIX1 then
33: mis[destv]← FIX0
34: for each u in adjacencies(destv,Glocal) do
35: if (u > destv) then
36: Send(u,destv,mis[destv])
37: end if
38: end for
39: else . srcstate=FIX0
40: if (srcv < destv) then
41: predcc[destv]← (predcc[destv]+1)
42: end if
43: if predcc[destv] == predcount[destv] then
44: mis[destv]← FIX1
45: for each u in adjacencies(destv,Glocal) do
46: if (u > destv) then
47: Send(u,destv,mis[destv])
48: end if
49: end for
50: end if
51: end if
52: end procedure

8.3. Ordering in FIX

The FIX algorithm discussed above is an unordered algorithm. Therefore, the order

in which the states are updated does not affect the correctness of the algorithm, but with

certain ordering schemes we can reduce the amount of computations in FIX.

The FIX algorithm decides a vertex is in the MIS (FIX1) if all of its predecessors are not

in MIS. Therefore, the sooner a vertex finds out that it is in MIS, the more computations

it can avoid. For example, in Figure 8.4, the vertex v has four predecessors; out of those

four, one predecessor is in state FIX1. If v gets a state change from the vertex in FIX1 first,

v will not have to execute the logic relevant to increase predcc count and the “if condition”

that compares predcc and predcount. If the thread level vertex distribution is random, the
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FIGURE 8.4. DAGs created by FIX algorithm execution for the graph input in 8.1.
predcc count will be a atomic variable and processing FIX1 predecessors first will consid-

erably reduce the contention when processing a large graph, especially in shared memory

execution. However, if we process FIX0 predecessors before FIX1, the computation we did

for FIX0 state changes have no effect on the final outcome.

We came up with two forms of orderings that reduce computations as described above.

The first approach orders the execution on the state. That is, messages generated are sep-

arated into two buckets. The first bucket contains the work originated from vertices whose

states transferred to FIX1. The second bucket contains the work originated from vertices

who transferred their states to FIX0. How execution proceeds in this ordering is depicted

in Figure 8.5. Implicitly, the bucket ordering traverse the DAG in a level synchronous

fashion. We call this algorithm FIX-Bucket and it is discussed in detail in Section 8.3.1.
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FIGURE 8.5. How DAG is executed in FIX-Bucket ordering.

The above ordering involves a global barrier to be executed in every level. The second

ordering we propose (FIX-PQ), skips global synchronization and performs local ordering

on work. The work generated is ordered based on the state of the source vertex as well

as on the distance from the originating source (in the DAG). The work with FIX1 state

is immediately processed and work that has FIX0 state is ordered by distance from the

relevant source. When the distance is higher the priority is also high. The purpose of

distance ordering is to propagate state changes deeper into the DAG.

Both the FIX-Bucket and FIX-PQ algorithms require fewer computations than the orig-

inal FIX algorithm. Table 8.1 shows the number of computations saved by each algorithm

relative to the original FIX algorithm. The “Skipped” denotes the number of times the Re-

ceive function is invoked even though there is no state change or increase in predcc count.

The “Called” denotes the number of times the Receive function was invoked and there was

a state change or predcc counter was increased.
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FIX FIX-PQ FIX-
Bucket

Skipped 84208408
(65.10%)

119592110
(92.46%)

112771147
(87.16%)

Called 45130908
(34.89%)

9747206
(7.53%)

16613655
(12.84%)

Total 129339316 129339316 129339316
TABLE 8.1. Saved computations for FIX-Bucket and FIX-PQ algorithms,
relative to FIX. Results are for scale 23, RMAT-1 (refer Section 8.4.3 for de-
tails) graph with 4 cores running in parallel.

Process

FIX1 Work FIX0 Work

Process
barrier

barrier

FIGURE 8.6. An overview of the FIX-Bucket algorithm.
As per the statistics in Table 8.1, the FIX-PQ algorithm saves the most amount of work.

This is primarily because FIX-PQ is ordered using both distance and state and so able to

propagate FIX1 state changes to successors faster than FIX-Bucket is able to.

In the following section we discuss the FIX-Bucket and the FIX-PQ algorithms in detail.

8.3.1. FIX-Bucket Algorithm. The FIX-Bucket algorithm maintains two distributed con-

tainers, called buckets (Figure 8.6). Locally, a bucket is implemented as an append buffer,

but before processing the append buffer all ranks must globally synchronize. In other

words an append buffer is processed within an epoch. The first container, which we call

fix0bucket, stores all the vertices where state is transferred to FIX0. The second container,

fix1bucket, stores all the vertices where state is changed to FIX1.

The FIX-Bucket algorithm is listed in Algorithm 12. The initialization code is the same

as the initialization procedure in Algorithm 11. The FIX-Bucket algorithm starts in the
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same way as the FIX algorithm but at the end of the FIXBucketMIS (Lines 9 to 21) pro-

cedure, FIXBucketMIS calls the HandleBuckets procedure. In every rank, the HandleBuck-

ets(Lines 23 to 46) procedure iterates through each bucket in parallel threads and sends

state changes to successors. However, at a given time, all the ranks iterate through only

one bucket. Therefore, unlike in the FIX algorithm, in the FIX-Bucket algorithm there are

no messages originating from FIX0 vertices when processing fix1buckets. Also there are no

messages originating from FIX1 vertices when processing fix0buckets. The Receive function

handles incoming messages and populates them to appropriate buckets.
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Algorithm 12 Distributed Memory Parallel FIX-Bucket Algorithm

1: predcount←{0...0}
2: predcc←{0...0}
3: fix0bucket←{}
4: fix1bucket←{}
5: procedure INITIALIZE(Glocal)
6: /*Same as the Initialization procedure in Algorithm 11*/.
7: end procedure
8:
9: procedure FIXBUCKETMIS(Glocal)

10: epoch {
11: for each Vertex v in Glocal in parallel do
12: if (predcount[v] == 0) then
13: mis[v]← FIX1
14: for each u in adjacencies(v,Glocal) do
15: Send(u,v,mis[v])
16: end for
17: end if
18: end for
19: }
20: HandleBuckets()
21: end procedure
22:
23: procedure HANDLEBUCKETS(void)
24: while fix0bucket not empty and fix1bucket not empty do
25: /*Handle FIX0 bucket.*/
26: epoch {
27: for each Vertex v in fix0bucket in parallel do
28: for each u in adjacencies(v,Glocal) do
29: if (u > v) then
30: Send(u,v,mis[v])
31: end if
32: end for
33: end for
34: }
35: /*Handle FIX1 bucket.*/
36: epoch {
37: for each Vertex v in fix1bucket in parallel thread do
38: for each u in adjacencies(v,Glocal) do
39: if (u > v) then
40: Send(u,v,mis[v])
41: end if
42: end for
43: end for
44: }
45: end while
46: end procedure
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47: procedure RECEIVE(destv, srcv, srcstate)
48: if mis[destv]! =UNFIX then
49: return
50: end if
51: if srcstate == FIX1 then
52: mis[destv]← FIX0
53: fix0bucket→ push(destv)
54: else . srcstate=FIX0
55: if (srcv < destv) then
56: predcc[destv]← (predcc[destv]+1)
57: end if
58: if predcc[destv] == predcount[destv] then
59: mis[destv]← FIX1
60: fix1bucket→ push(destv)
61: end if
62: end if
63: end procedure

8.3.2. FIX-PQ Algorithm. The execution time of the FIX algorithm depends on the

maximum height of the virtual DAG (e.g., Figure 8.3). The longest path of the DAG is

important, especially when deciding whether a vertex should be transferred to FIX1 state,

because a vertex’s state can only be updated to FIX1 if all predecessors of the vertex are in

FIX0 state. Processing work generated by FIX1 vertices is straightforward since neighbors

of FIX1 must be transferred to FIX0 irrespective of the number of predecessors. Further-

more, notifying successors about a state change of a vertex to FIX1 helps to save computa-

tions. Therefore, the FIX-PQ algorithm processes FIX1 work immediately and orders work

generated by FIX0 vertices based on the distance from a source. The ordering is applied at

the thread level to avoid the overhead of synchronization.

The FIX-PQ algorithm is listed in Algorithm 13. The algorithm keeps an array of prior-

ity queues and the size of the array is equal to the number of threads (Line 3). The function

getnumthreads returns the number of threads the algorithm is executing. The Initialize pro-

cedure is the same as the Initialize procedure in Algorithm 11. The FIXPQMIS procedure

(Lines 8 to 20) adds source vertices to the MIS and notifies state changes. In the same

epoch the algorithm calls the function HandlePQs (Line 18). Also, algorithm uses workitem

structure to encapsulate destination vertex, source vertex, source state and distance.
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For each shared memory thread, the HandlePQs(Lines 22 to 40) procedure pop work

from the priority queue and process it. The priority queue only contains work related

to FIX0 predecessors, therefore, the processing logic updates predcc count and checks

whether the destination vertex can be promoted to FIX1. The HandlePQs procedure is

executed until there is work available in the system. The function terminate() returns True

when the termination detection detects that there is no more work to be processed.

The Receive function (Lines 41 to 52) processes work items originating from FIX1 ver-

tices and work items originating from FIX0 vertices are added to the priority queue for the

current thread.

Note that HandlePQs’ procedure is invoked within the epoch of the FIXPQMIS proce-

dure. Therefore, Algorithm 13 executes asynchronously, but work is ordered at the thread

level.
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Algorithm 13 Distributed Memory Parallel FIX-PQ Algorithm

1: predcount←{0...0}
2: predcc←{0...0}
3: pqs[getnumthreads()]
4: procedure INITIALIZE(Glocal)
5: /*Same as the Initialization procedure in Algorithm 11*/.
6: end procedure
7:
8: procedure FIXPQMIS(Glocal)
9: epoch {

10: for each Vertex v in Glocal in parallel do
11: if (predcount[v] == 0) then
12: mis[v]← FIX1
13: for each u in adjacencies(v,Glocal) do
14: Send(u,v,mis[v])
15: end for
16: end if
17: end for
18: HandlePQs()
19: }
20: end procedure
21:
22: procedure HANDLEPQS(void)
23: while terminate() is False do
24: while pqs[getthreadid()] not empty do
25: workitem wi← pqs[getthreadid()].pop()
26: if (wi.srcv < wi.destv) then
27: predcc[wi.destv]← (predcc[wi.destv]+1)
28: end if
29: if predcc[wi.destv] == predcount[wi.destv] then
30: mis[wi.destv]← FIX1
31: for each u in adjacencies(wi.destv,Glocal) do
32: if (u > wi.destv) then
33: workitem wn(u,wi.destv,mis[wi.destv],(wi.dist+1))
34: Send(wn)
35: end if
36: end for
37: end if
38: end while
39: end while
40: end procedure
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41: procedure RECEIVE(wi : workitem)
42: if wi.srcstate == FIX1 then
43: mis[wi.destv]← FIX0
44: for each u in adjacencies(wi.destv,Glocal) do
45: if (u > wi.destv) then
46: Send(u,wi.destv,mis[wi.destv])
47: end if
48: end for
49: else . wi.srcstate=FIX0
50: pqs[getthreadid()]→ push(wi)
51: end if
52: end procedure

8.4. Implementation & Experiments

8.4.1. Implementation. The proposed algorithms are implemented on top of an MPI-

wrapped, lightweight, active messaging framework called AM++ [136]. Graph vertices

are equally distributed among participating nodes (1D block distribution). The local graph

is represented using a compressed sparse row format. In the local graph each undirected edge

is represented using two directed edges.

Algorithm implementations are resilient to parallel edges and self-loops. Both parallel

edges and self-loops are handled within algorithms. Whenever there is code that iterates

through adjacencies of a vertex, the algorithm inserts adjacent vertices to a local set. The

body of the loop is executed only if the adjacent vertex is not present in the set.

8.4.2. Experiment Setup. We ran our experiments on a Cray XC system that has 2

Broadwell 22-core Intel Xeon processors. Our experiments only used up to 16 cores to uni-

formly double the problem size and to double the number of processors in weak scaling.

Each node consists of 128 GB DDR4-2400 memory. The MPI implementation we used is

Cray MPICH (version 7.4.4).

Preliminary results show that to get the best performance results for all the algorithms,

we need to run two processes per node (because there are two sockets per node) in MPI

thread multiple mode.
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Graph Vertices Edges
Friendster 65608366 1806067135
US Road 23947347 58333344
RMAT-1(26)(rmat1) 67108864 1073741824
RMAT-2(26)(rmat2) 67108864 1073741824

TABLE 8.2. Graph inputs and their attributes used in strong scaling experiments

8.4.3. Graph Input. We evaluate the MIS algorithms in terms of strong scaling and weak

scaling. For weak scaling experiments, we use R-MAT [23] synthetic graphs. Two types of

RMAT synthetic graphs are used. They are:

• RMAT-1: Graphs based on the current Graph500 [104] Breadth First Search bench-

mark specification with R-MAT parameters A = 0.57, B =C = 0.19 and D = 0.05.

• RMAT-2: Graphs generated based on the proposed Graph500 [56] SSSP bench-

mark specification with R-MAT parameters A = 0.50, B =C = 0.1 and D = 0.3.

Strong scaling experiments were carried out on the graphs listed in table 8.2.

8.5. Results

The weak scaling results of the proposed algorithms are compared against two differ-

ent implementations of Luby algorithms : 1. Luby(A) and Luby(B) discussed in [73] and;

2. Luby(A) in CombBLAS library. Section 8.5.1 discusses these results. In the results, when

we use FIX* we refer to FIX, FIX-Bucket and FIX-PQ algorithms collectively.

8.5.1. Weak Scaling Results.

8.5.1.1. Comparison with Vertex-Centric Luby Algorithms. Weak scaling results of FIX*

algorithms are presented in Figure 8.7 on RMAT-1 and RMAT-2 graph inputs. Both in

shared memory and in distributed memory FIX* algorithms outperform Luby(A). Luby(B)

shows better performance for few initial scales in shared memory and as the execution

moves to distributed memory, FIX* algorithms supersede the performance of Luby(B). We

were unable to collect Luby(A) results for scale 32 graphs at 64 nodes due to an “out of

memory” error.

Ordering helps to improve the performance of FIX* algorithms by reducing the re-

quired number of computations (See Section 8.3). In shared memory, we see that FIX-PQ
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FIGURE 8.7. FIX* & Luby algorithms weak scaling results for RMAT-1 and
RMAT-2 graphs. Shaded region shows the shared memory execution.

shows better performance than FIX. In shared memory FIX-PQ is able to avoid more com-

putations than FIX algorithm, but, when the execution becomes distributed, performance

improvement in FIX-PQ is not prominent compared to FIX. As the execution becomes dis-

tributed, the compute / communication ratio decreases and more time is spent on com-

munication. Therefore, the performance improvement gained by reducing computation is

small relative to the much higher overhead cost of distributing execution.

The FIX-Bucket algorithm shows better weak scaling results in distributed execution.

Starting from the sources of the DAG, The FIX-Bucket algorithm progress by processing

vertices in each level. This way, algorithm assures that predecessors are always pro-

cessed and hence it is able to avoid most of the redundant computations. However, the

FIX-Bucket algorithm requires a barrier synchronization after processing each level in the
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graph. Overhead of this barrier synchronization is not as significant as RMAT graphs gen-

erally have fewer synchronization levels. Also, RMAT graphs are well-connected; there-

fore, there is enough work to keep all processors busy.

8.5.1.2. Comparison with CombBLAS Luby Algorithms. The FilteredMIS [19] algorithm

runs Luby(A) with edge filtering. However, implementations presented in this chapter

do not perform any edge filtering. We show FilteredMIS results with 0% and 50% edge

filtering where no edges and half of the edges are ignored, respectively. The more edges

are ignored, the better FilteredMIS performs.

Distributed execution of FilteredMIS results show a zig-zag pattern (when cores > 32).

The CombBLAS version we use only supports a square number of tasks; therefore, when

executing on a non-square number of nodes (2, 8, 32) we used two tasks per node to make

the execution on a square number of processes. When the number of tasks per node is

two, FilteredMIS execution time decreases and when the number of tasks per node is 1,

the execution time increases.

8.5.2. Strong Scaling Results. For strong scaling experiments, we ran MIS algorithms

on graphs listed in table 8.2 over 1–1024 cores. To have better understanding about how

algorithms scale relative to each other, we measured Relative Speedup,= Tre f 1
Tn

i.e., the ratio

of the execution time of the fastest sequential algorithm, Tre f 1 and the parallel execution

time on n processing elements, Tn.

8.5.2.1. Low diameter graphs. Strong scaling results of FIX* algorithms and Luby’s algo-

rithms on RMAT graphs are shown in Figure 8.9. For both RMAT-1 and RMAT-2 graphs

we see better speedup in FIX* algorithms than Luby’s algorithms. We see some drop in

speedup when algorithm execution moves from shared memory to distributed memory.

When execution reaches 2048 cores, the Luby B algorithm speedup decrease due to over-

head of barrier synchronization. Further, we see an unusual scaling behavior of Luby(B)

on the Friendstr network both in shared memory and for some cores in distributed mem-

ory. However, we validated our results. FIX* algorithms show better scaling behavior

compared to both Luby algorithms.
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FIGURE 8.8. FIX* & CombBLAS FilteredMIS algorithms, weak scaling re-
sults for RMAT-1 and RMAT-2 graphs. Shaded region shows the shared
memory execution.

8.5.2.2. Higher diameter graphs. In general, both RMAT-1 and RMAT-2 generate low di-

ameter graphs (diameter 10-50, the diameter is estimated using the approximate diameter

algorithm) relative to road networks. Further, Friendster graph’s diameter is 32 [84]. Com-

pared to the diameters of those graphs, road networks have larger diameters. Figure 8.10

shows strong scaling results for US road networks. The approximate diameter of a US road

network is 850 [84].

As per Figure 8.10, both FIX and FIX-PQ show sound, strong scaling results for US road

networks. Due to large diameter in road networks, the FIX-Bucket algorithm executes

many synchronization phases (≈850 barriers). Because of the overhead of barrier syn-

chronization FIX and FIX-PQ outperform FIX-Bucket. We see the FIX algorithm achieving
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FIGURE 8.9. Strong scaling results of FIX* algorithms and vertex centric
Luby’s algorithms
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FIGURE 8.10. Strong scaling results of FIX* algorithms and vertex centric
Luby’s algorithms.

slightly better speedup compared to FIX-PQ. Unlike the RMAT and the Friendstr graphs,

road networks is not a well- connected graph and it has a higher-diameter compared to

RMAT and Friendstr. Therefore, the number of saved computations in FIX-PQ in road

network is less and it is unable to gain performance over the FIX algorithm.

8.6. MIS in AGM

The proposed MIS algorithm maintains a state per each vertex. The state determines

whether a vertex is in MIS or not in MIS. Therefore, if a state change occurs in a vertex, it

needs to notify low priority neighbors. I define WorkItemsmis ⊆ Vertex×Vertex×State. The

first vertex value defines the destination, the second vertex value defines the source, and

the state value defines whether the source vertex is in MIS or not. If state is 1 (FIX1), then

the source vertex is in MIS, and if state is 0 (FIX0) , then the source vertex is not in MIS.

The AGM model for the proposed algorithm uses two states: mis state stores the state of

each vertex and waitcnt stores the number of higher priority neighbors that are in FIX0

state. Further, I assume the input graph is G = (V,E,vmaps = {wait},emaps = {}). Here, the
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wait mapping stores the number of higher priority neighbors of a vertex and this can be

calculated as a pre-processing step. The processing function for the proposed algorithm

consists of three statements. The first statement is enabled if the receiving workitem’s source

vertex is in the MIS. The second statement is enabled if the receiving workitem’s source

vertex is not in MIS and if the value of wait for the destination vertex is less than the

waitcnt for the destination vertex. The last statement is enabled if the source vertex is not

in MIS and if all higher priority neighbors of the destination vertex are also in FIX0 state.

As discussed above, there are several ways to order workitems. A straight forward way

to order workitems is not to relate any workitems (See Definition 16). Such a relation creates

a Chaotic ordering of workitems. I name the algorithm made out of Chaotic ordering as FIX.

In Definition 16, I divide workitems into two equivalence classes. The first equivalence class

contains the FIX1 workitems and the second equivalence class contains the FIX0 workitems

(FIX-Bucket).

DEFINITION 16. <ch is a binary relation defined on WorkItemsmis where, w1≮ch w2 nor w2≮ch

w2 for any w1,w2 ∈WorkItemsmis.

DEFINITION 17. <fixbk is a binary relation defined on WorkItemsmis where, w1 <fixbk w2 if

w1[2]< w2[2].
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DEFINITION 18. πmis : WorkItemsmis −→ 2WorkItemsmis

π
mis(w) =



#Statement 1

{wk|wk ∈< wn[0] ∈ neighbors(w[0]) and

wn[0]> w[0] and wn[1]←− w[0] and

w[2]←− mis(w[0])

and wn[2] = w[2]+1 >,

< mis(w[0])←− FIX0 >,

< i f FIX1 == w[2]>}∪

#Statement 2

{wk|wk ∈< {}>,

< waitcnt(w[0])←− (waitcnt(w[0])+1)>,

< i f ((FIX0 == w[2])&&

wait(w[0])> waitcnt(w[0]))>}∪

#Statement 3

{wk|wk ∈< wn[0] ∈ neighbors(w[0]) and

wn[0]> w[0] and wn[1]←− w[0] and

w[2]←− mis(w[0])

and wn[2] = w[2]+1 >,

< mis(w[0])←− FIX1 >,

< i f ((FIX0 == w[2])&&

wait(w[0]) == (waitcnt(w[0])−1))>}

PROPOSITION 5. MIS-FIX Algorithm is an instance of AGM where:

(1) G = (V,E,vmaps = {wait,ρ},emaps = {}) is the input graph,

(2) WorkItems = WorkItemsmis,
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(3) Q = {mis, waitcnt} is the state mapping and initially ∀i∈V,mis(i)=UNFIX & waitcnt(i)=

α whereα = count({w|w ∈ neighbors(i) & ρ(w)> ρ(i)}),
(4) π = πmis,

(5) Strict weak ordering relation <wis = < f ixbk,

(6) S = {<v, v, FIX1 >} where v ∈V and ∀i ∈ neighbors(v), ρ(v)> ρ(i).

8.7. Summary

Maximal Independent Set (MIS) is a well-studied graph problem, and there are parallel

algorithms to solve it. However, most of those algorithms show poor performance in dis-

tributed settings due to synchronous communication, subgraph construction, and random

number generation.

In this chapter, we presented three MIS algorithms suitable for distributed memory

parallel execution. The FIX algorithm is an asynchronous algorithm designed for dis-

tributed execution and FIX-Bucket and FIX-PQ algorithms make use of ordering to reduce

computations. While FIX-Bucket performs ordering at a global level, the FIX-PQ algorithm

performs ordering at the thread level to avoid global synchronization.

Weak scaling results on RMAT graphs show that FIX* algorithms outperform both

vertex-centric Luby implementations as well as CombBLAS FilteredMIS algorithm. Weak

scaling results and strong scaling results (except road network) show that the FIX-Bucket

algorithm performs well for low-diameter graphs. For higher-diameter graphs FIX and

FIX-PQ outperform other algorithms.
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9

Orderings in Triangle Counting

Triangles are the most basic non-trivial subgraphs. Triangle counting is used in a num-

ber of different applications, including social network mining, cyber security, and spam

detection. In general, triangle counting algorithms are readily parallelizable, but when

implemented in distributed, shared-memory, their performance is poor due to high com-

munication, imbalance of work, and the difficulty of exploiting locality available in shared

memory. In this chapter, we discuss four different (but related) triangle counting algo-

rithms and how their performance can be improved in distributed, shared-memory by

reducing in-node load imbalance, improving cache utilization, minimizing network over-

head, and minimizing algorithmic work. We generalize the four different triangle counting

algorithms into a common framework and show that for all four algorithms the in-node

load imbalance can be minimized while utilizing caches by partitioning work into blocks

of vertices, the network overhead can be minimized by aggregation of blocks of work, and

algorithm work can be reduced by partitioning vertex neighbors by degree.

We experimentally evaluate the weak and the strong scaling performance of the pro-

posed algorithms with two types of synthetic graph inputs and three real-world graph

inputs. We also compare the performance of our implementations with the distributed,

shared-memory triangle counting algorithms available in PowerGraph-GraphLab and show

that our proposed algorithms outperform those algorithms, both in terms of space and

time.
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9.1. Introduction

For a given graph G = (V,E), triangle counting involves finding structures that have

three vertices connected to each other by an edge. Triangle counting is used in many

applications. For example, triangles are used to assess the content quality of social net-

works [135], to detect web spam [13] and to uncover thematic structures of the web [36].

With the increasing size of data sets, the graphs generated for those applications are grow-

ing larger and may not fit into a single machine memory.

Algorithm 14 Parallel Node Iterator Triangle Counting Algo-
rithm
NodeIterator Glocal = (V,E) :

1: for each v in V parallel do
2: for each u ∈ pred(v) do
3: for each w ∈ succ(v) do
4: if u ∈ pred(w) then
5: TC = TC+1
6: end if
7: end for
8: end for
9: end for

Hybrid, Single Program, Multiple Data (SPMD) approaches that represent distributed,

shared-memory runtimes are a popular way to deal with these large graphs. MPI+OpenMP

or MPI+PThreads are two such examples. When extending triangle counting for such dis-

tributed, shared-memory runtimes we face several challenges: 1. in-node load imbalance,

2. poor cache utilization, and, 3. higher message communication. Further, certain prepro-

cessing optimizations applicable for shared-memory parallel triangle counting algorithms

become cumbersome and inefficient to apply when the processing graph is distributed. In

this chapter, we demonstrate step-by-step how we developed four related triangle count-

ing algorithms that are scalable in distributed, shared-memory runtimes.

Most of the existing parallel triangle counting algorithms are variations of the sequen-

tial triangle counting algorithm: Node-Iterator [121]. Node-Iterator partitions neighbors of

a vertex into two sets. The set pred(v) is defined as the set of neighbors of v that are less

than v and set succ(v) is defined as the set of neighbors of v that are greater than v. The set
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pred(v) is called predecessors of v and the set succ(v) is called successors of v. The parallel ver-

sion of this algorithm (Listed in Algorithm 14) iterates over vertices and checks whether

a vertex in predecessor set and a vertex in successor set makes an edge; if they do, the

number of triangles is incremented.

A straightforward extension of this algorithm for distributed, shared-memory parallel

execution, is to distribute vertices among different nodes and process every vertex in a

separate parallel thread. This approach creates load imbalance between parallel threads

when processing a skewed graph as threads that process hub vertices take more time com-

pared to the threads that process vertices with fewer edges. In distributed execution, the

algorithm needs to send each (v,u) pair to the node that owns vertex w to check whether u

is in the predecessor set of w. When the number of distributed nodes is increased, the num-

ber of messages the algorithm needs to send also increases, as the successor vertex set of

w can be distributed among the nodes. Therefore, when the number of nodes is increased

algorithm spends more time on communication and less time on computation.

By processing every wedge (a possible triangle) in a separate parallel thread, algorithm

can balance the load. However, processing every wedge in a separate parallel thread re-

duces the cache utilization and also increases the number of messages in distributed ex-

ecution. A common optimization to reduce the number of processing wedges is to order

vertices by their degree (e.g., [109]). Applying this optimization as it is for distributed,

shared-memory triangle counting is challenging. Permuting vertex ids in a distributed

setting requires sorting vertices by the degree, assigning new ids and exchanging those

new ids with all other adjacencies in remote ranks and then, rebuilding the graph. This

preprocessing step consumes time and is cumbersome to implement in a distributed set-

ting.

In this chapter, we show how we handled each of the above discussed challenges. First,

we show that Node-Iterator is one of four ways to do triangle counting and we general-

ize those four algorithms using two common abstractions (Section 9.2). All the previously

discussed challenges are applicable to all four algorithms. To balance the overhead of load

imbalance, cache utilization and to reduce the latency of each of the small messages, we
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propose blocking neighbors – this is described in Section 9.4. Further, many real world

graphs tend to have a small number of vertices with a high degree and a large number of

vertices with a small degree. Therefore, we saw that latency incurred during distributed

execution was still high with vertex blocks. Section 9.4.3 shows how latency of small blocks

can be further reduced using block aggregation. Finally, we propose four triangle counting

algorithms with two super-steps in each. In the first super-step, the algorithms partition

neighbors by their degree, and in the second super-step the algorithms calculate the num-

ber of triangles. Partitioning neighbors by degree avoids the need for distributed sorting

and graph re-construction.

Much of the existing work focuses on shared-memory, distributed-memory, or external

memory. In this chapter we consider hybrid runtime models and the problems that one

encounters when implementing triangle counting in such hybrid models. Some of the

techniques we use are not new in separation (e.g., message aggregation), we use them in

novel combinations to achieve better scaling. Selecting features and showing how to use

them in combination to achieve better performing distributed, shared-memory parallel

triangle counting algorithms is the main contribution of this chapter.

The performances of our proposed algorithms are evaluated on weak-scaling and strong-

scaling (Section 9.6). For weak scaling we use two types of synthetic graphs and for

strong scaling we use two types of synthetic graphs and three large real-world networks

from [79]. Results show that the proposed algorithms scale well. In addition, we also

compare our results with another distributed, shared-memory triangle counting imple-

mentation: PowerGraph-GraphLab [55] triangle counting algorithms and show that our

algorithms outperform that triangle counting algorithms.

9.2. Triangle Counting

The parallel Node-Iterator algorithm discussed in Section 9.1 partitions neighbors of

every vertex into two. To partition the neighbors, the algorithm uses vertex ids. For every

vertex, v, the algorithm intersects the predecessor set of v with v’s successor’s predecessors

(See Figure 9.1a). The size of the intersection is accumulated into the number of triangles.
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FIGURE 9.1. Set intersection in PSP and SSS algorithms.
We call this algorithm PSP. Mathematically, this triangle counting algorithm is expressed

in Equation (1). In Equation (1), TC is the total number of triangles counted, and, as ex-

plained above, every vertex goes through its successors and intersects the vertex’s prede-

cessors with each successor’s predecessors.

(1) TC = Σv∈V Σs∈succ(v)|pred(v)∩pred(s)|

The same number of triangles can be counted by switching pred with succ and succ

with pred in Equation (1). In other words, instead of intersecting a vertex’s predecessor set

with successor’s predecessor set we can intersect the vertex’s successors with the prede-

cessor’s successor sets. We call this algorithm successor, predecessor’s successor (SPS) and it

is expressed in Equation (2).

(2) TC = Σv∈V Σp∈pred(v)|succ(v)∩ succ(p)|

Another approach to count triangles is to intersect the successor set of a vertex with its

successor’s successors. Figure 9.1b depicts the algorithm. We call this algorithm SSS, and

the mathematical equation for this algorithm is given in Equation (3).

(3) TC = Σv∈V Σs∈succ(v)|succ(v)∩ succ(s)|
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Algorithm set1 set2 set3
PSP succ pred pred
SPS pred succ succ
SSS succ succ succ
PPP pred pred pred

TABLE 9.1. set1, set2 and set3 parameter values for each triangle counting
algorithm.

In Equation (4), we switch succ with pred, as we did in Equation (1). The resulting

equation is given in Equation (4). The algorithm represented in Equation (4) goes through

predecessors of every vertex and intersects with predecessor’s predecessor set (Named as

predecessor, predecessor’s predecessor (PPP)).

(4) TC = Σv∈V Σs∈pred(v)|pred(v)∩pred(s)|

An important observation of these algorithms is that they all involve three sets per

each vertex. A generalized equation for triangle counting is given in Equation (5). The

general form has a predecessor set or a successor set of the iterating vertex (set1) to iterate,

a predecessor set or a successor set of the iterating vertex (set2), and a predecessor set or a

successor set corresponding to a vertex in the iterating set (set3). Table 9.1 summarizes the

algorithms with appropriate values for set1, set2, and set3.

(5) TC = Σv∈V Σs∈set1(v)|set2(v)∩ set3(s)|

9.3. Distributed, Shared-Memory Triangle Counting

As we saw in the previous section, the main operation in triangle counting is the inter-

section between two sets. In a distributed environment all the elements of these two sets

may not reside in the same locality. In such situations we need to collect all the elements

in both sets into one locality and perform the set intersection.
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Algorithm 15 PSP Triangle Counting Algorithm

PSP Glocal = (V,E):
1: epoch {
2: for each v in V in a parallel thread do
3: for each s ∈ succ(v) do
4: Send pred(v) & s to owner of s
5: end for
6: end for
7: }

Receive pred(v),s:
1: TC += pred(v)∩pred(s)

9.3.1. Graph Distribution & Data Structures.
Algorithm 16 Generalized Triangle Counting Algorithm

TC Glocal = (V,E):
1: epoch {
2: for each v in V in a parallel thread do
3: for each s ∈ set1(v) do
4: Send set2(v) & s to owner of s
5: end for
6: end for
7: }

Receive set2(v),s:
1: TC += set2(v)∩ set3(s)

In our implementations, vertices are distributed equally among the participating nodes

(1D distribution). A vertex id is represented using 64 bit integers. The first 48 bits represent

the local vertex id and the second 16 bits represent the node id a vertex belongs to. Every

rank contains a set of vertices and a set of edges corresponding to the vertices in the vertex

set. Vertices and edges local to a rank are stored in compressed sparse row (CSR) format.

This is shown in Figure 9.2. In Figure 9.2, every rank is separated using a vertical dash line

and “Rn” represents rank n. We find the rank which a vertex belongs to by looking at the

second 16 bits of the global vertex id. The CSR format consists of two arrays: 1. Indices

array – this array stores the edges; and, 2. Indices pointer array – this array stores edge

ranges belonging to every vertex. As an example, adjacencies for vertex vk in rank R0 are

found in the indices pointer array from position “a” to position “b”.
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FIGURE 9.2. Separating successors and predecessors in CSR structure.
Assuming the indices range for every vertex is sorted, it is straightforward to calculate

the predecessor set and successor set for every vertex. For every vertex, vk, we need to

find the position in the indices array that divides neighbors compared to vk. Suppose this

position is m, then range [a, m) denotes the predecessor set of vk and the range [m, b)

represents the successor set of vk. In other words, vertices in range (a, m] in the indices

array are less than vk, and vertices in the range (m, b] in the indices array are greater than

vk (See R0 CSR in Figure 9.2). This way we limit the amount of additional space needed to

store predecessor sets and successor sets to O(|V |) (we only need to store the position m for

every vertex).

However, many real-world graphs are unsorted. Still, when building the CSR structure

we need to sort them by the source vertex (e.g., Histogram Sort). For unsorted graphs, this

sorting step is extended and vertices are sorted by the source and then, by the destination.

Note that this sorting step is local to a node and does not require any form of distributed

communication; it takes place during the graph construction.

9.3.2. Challenges in Distributed Shared-Memory Parallel Triangle Counting. To con-

struct an effective distributed, shared-memory parallel triangle counting algorithm, there

were three primary problems we needed to solve: in our initial attempt to solve these chal-

lenges we came up with the PSP triangle counting algorithm listed in Algorithm 15. In

this algorithm, every vertex processes in a separate parallel thread. An epoch (Line 1) is

a code region that indicates explicit communication is taking place. Every vertex sends
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each thread on LiveJournal social network graph with SSS triangle counting
algorithm.

its predecessor set to each owner rank of its successors. Then, the rank that receives the

predecessor set performs the intersection in a single thread.

By switching “pred” set with “succ” set and “succ” set with “pred” set in the above

algorithm we get the SPS algorithm. In a similar way we can get the other algorithms.

Algorithm 16 lists a generalized triangle counting algorithm and by replacing set1, set2 and

set3 according to values in Table 9.1, we get PSP, SPS, SSS and PPP. The performance of

these initial implementations are poor because of:

(1) load imbalance between processing elements,

(2) redundant messages to the same rank.

For algorithms derived from Algorithm 16 (including Algorithm 15) we measured the

work done by each parallel thread by counting the number of set comparisons performed

by each thread. Figure 9.3 shows the set comparisons performed by each thread when

processing LiveJournal social network graph [85] on 16 shared-memory parallel threads

with the SSS algorithm. As can be seen in Figure 9.3, some threads are more utilized than

others. Thread number seven performs the fewest set comparisons (i.e., 533529383) and

thread number eight performs the most set comparisons.

Load imbalance is mainly caused by the uneven distribution of degrees on vertices. In

Algorithm 16 every vertex is processed by a separated parallel thread. Figure 9.3 shows the
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maximum degree and maximum number of successors of all the vertices processed by a

thread in SSS algorithm. As can be seen in Figure 9.3 thread 8 has processed the vertex with

highest degree (also the maximum number of successors) and thread seven has processed

smaller degree vertices. Most of the real-world graphs are power-low graphs (i.e., they

have few vertices that have a high number of neighbors and high number of vertices with

fewer number of neighbors). It takes more time to perform set intersections on vertices

with higher numbers of neighbors than vertices with fewer neighbors. Therefore, threads

that process vertices with higher numbers of neighbors take more time than threads that

process vertices with fewer numbers of neighbors.

One approach to overcome the load imbalance is to process each open wedge (a possi-

ble triangle) in a separate parallel thread. An open wedge is a triple : a predecessor of a

vertex, a successor of a vertex and the vertex (See Figure 9.4). Now each thread processes

an open wedge and the “Receive” function of Algorithm 15 needs to be modified to do a

binary search on the successor’s predecessor set instead of the set intersection. While this

approach balances the work among parallel threads, it generates a lot of of messages. If

a vertex has “n” number of predecessors and “m” number of successors, then this algo-

rithm creates n×m number of messages per vertex. If we assume the average degree of a

vertex is d, then this approach creates approximately O(|V |×d2) messages. The algorithm

also loses the ability to take advantage of better cache utilization due to binary search at

the receiver’s end. The accumulated runtime overhead and binary search to process the

significant number of generated messages is quite high. Therefore, this approach does not

show the advantage of load balance because the overhead of message communication and

binary search is greater than the advantage achieved by load balancing.

9.4. Blocking and Grouping Vertices

To reduce the number of messages while balancing the load on processing threads we

came up with a strategy to block vertices in predecessor sets and successor sets (the PSP

algorithm). A block is a set of vertices. The block size is configurable. In the following we

explain the blocking process in general for all the algorithms.

129



www.manaraa.com

V

p0 p1 … pn-1 pn

s1 s2 s3 … sm-2 sm-1 sm

V

p0

s1

t0

V

p0

s2

t1

… V

p1

s1

ty

… V

pn

sm

tx

n

m

m x n

FIGURE 9.4. Every thread processes an open wedge

A B C D

set1 block

v0 v1v2 v3v4 v5 v6 v7v8

Set1

Set2

R0 R1 R2
set2 block

FIGURE 9.5. Blocking vertices in sets.
All the triangle counting algorithms discussed in Section 9.2 go through all the vertices

in parallel and send one set of neighbors (set1) to the owner of a vertex in an another

neighbor set (set2). For some algorithms (e.g., SSS and PPP) these two neighbor sets are the

same. With blocking, instead of sending a complete chunk of neighbors to the owner of an

another set, we send a subset, and this subset of vertices is called a “block”. This approach

reduces the number of messages relative to the approach discussed in Section 9.3.2.

Similar to set1 we also block vertices in set2. However, vertices in a set2 block may not

belong to the same rank. Therefore, in a set2 block, vertices are grouped by their rank (See

Figure 9.5 - suppose set2 block size is 10). A distributed message will have a block from

set1 vertices, and subset of a block in set2 vertices.

Every distributed message received by a rank is processed in a separate parallel shared-

memory thread. Therefore, every distributed message will cause a thread to execute set

intersections equal to the number of vertices in the group. The objective of blocking set2 is

to control the number of set intersections per thread.
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The PSP algorithm with message blocking and grouping for one rank is listed in Al-

gorithm 17. The code listed from Line 2 to Line 28 is executed for each shared-memory

parallel thread. As discussed earlier, an epoch represents a region where the program can

send/receive messages. Earlier algorithms (Algorithm 15 and Algorithm 16) process every

vertex in a separate shared-memory parallel thread, but in this algorithm each set1 block

(preblock in Line 15) is processed in a separate parallel thread. For the PSP, algorithm, set1

is the predecessor set of a vertex (shown in pred(v)) and set2 is the successor set of a ver-

tex (succ(v)). Every thread iterates over vertices (Line 3) and calculates an offset (Line 8).

However, if a vertex does not have any predecessors or successors we do not need to pro-

ceed executing the rest of the algorithm; it will not generate any triangles (See condition in

Line 4). The number of predecessor blocks and successor blocks is calculated based on pre-

decessor block size and successor block size (Line 9 and Line 10). Then, the loop in Line 12

iterates over predecessor blocks starting from the offset. The next predecessor block in this

“for” loop is selected after nthreads number of threads. Therefore, each thread processes a

single predecessor block at a time. Once a thread selects a predecessor block, it extracts the

vertices relevant to that block from pred(v) (Line 13–Line 15). The extracted predecessor

block needs to be sent to every successor’s rank. Line 16 iterates over successor blocks

and extracts an appropriate successor block and stores in the variable sucblock. Instead of

iterating over every vertex in this successor block, the algorithm, groups vertices in the

successor block based on the vertex ownership. That is, vertices belonging to the same

rank are grouped together. The function group-by-rank is responsible for grouping vertices

based on their rank (See Line 20). The output of this function is an array where “i th” po-

sition in that array has the successor vertices for rank i. Then, the algorithm iterates over

all rank ids and sends predecessor block and the respective successor block encapsulated

in a message to the respective rank (Line 21 – Line 24).

The receiving rank gets a predecessor block and a set of successor vertices (See Receive,

Line 2–Line 5). The receiving rank then goes through all vertices in the successor sets and

for each successor set it extracts the set of vertices that are greater than or equal to the first

element of the predecessor set (Receive, Line 3). The first element in the predecessor set
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Algorithm D1 Hit/Miss(%) D2 Hit/Miss(%)
Basic SSS 95.0/5.0 55.0/45.0
Blocked SSS,
block = 100

96.0/4.0 69.8/30.2

TABLE 9.2. Cache utilization of SSS vs. blocked SSS.

is a lower bound for this new set. Then, the algorithm performs an intersection between

the predecessors and the calculated lower bound set to determine the number of triangles

(Receive, Line 4).

Calculating the lower bound set allows us to save some comparison operations in set

intersection. Calculating an upper bound is not necessary since the set intersection com-

parison starts from the beginning of the sets; when set intersection reaches the end of the

smaller set, it terminates the set intersection operation.

The logic for the generalized blocked triangle counting algorithm is quite similar to

Algorithm 17, and, presented in Algorithm 18. In the generalized version of the algorithm,

the predecessor set of a vertex is replaced with set1 and the successor set of a vertex is

replaced with set2. For some algorithms both set1 and set2 are the same (e.g., SSS). For those

algorithms the logic is simpler because we iterate and send blocks to owners of vertices in

the same set. For example, for SSS we can remove the first condition from Algorithm 17,

Line 4, and we do not need to calculate nsetbblks as its value is the same as nsetablks.

9.4.1. Block Size in Shared-Memory. In shared-memory execution, smaller block sizes

(set1 block size and also set2 block size) reduce the load imbalance between parallel threads.

Figure 9.6 shows the number of comparisons performed by each thread for set intersection

in the SSS algorithm with LiveJournel graph input. Compared to Figure 9.3, Figure 9.6

shows much better balancing of work among different threads. For example, in SSS im-

plementation (Algorithm 16, with set1 =set2 =set3 =succ) a thread processes a vertex ir-

respective of the number of neighbors that vertex has. In the blocked implementation

(Algorithm 18), a vertex with a higher number of neighbors is processed by more than

one thread (depending upon the size of the block). Therefore, with blocking work can
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Algorithm 17 PSP Triangle Counting Algorithm with Blocking & Grouping

PSP Glocal = (V,E),predblksz,sucblksz,nthreads:
1: for each parallel thread : tid in nthreads do
2: epoch {
3: for each v in V do
4: if (|pred(v)|== 0) or (|succ(v)|== 0) then
5: continue;
6: end if
7:
8: offset = (v + tid) % nthreads;
9: npredblks = (|pred(v)|+predblksz−1) / predblksz

10: nsucblks = (|succ(v)|+ sucblksz−1) / sucblksz
11:
12: for (pos = offset; pos < npredblks; (pos += nthreads)) do
13: predstart = pos * predblksz
14: predend = min(predblksz, (|pred(v)|-predstart)) + predstart
15: preblock = {x|x ∈ pred(v) & (predstart≤ indexof(x)< predend)}
16: for (sucpos = 0; sucpos < nsucblks; sucpos++) do
17: sucstart = sucpos * sucblksz
18: sucend = min(sucblksz, (|succ(v)|-sucstart)) + sucstart
19: sucblock = {x|x ∈ succ(v) & (sucstart≤ indexof(x)< sucend)}
20: rankgroups = group-by-rank(sucblock)
21: for each r in ranks do
22: sucblckforrank = rankgroups[r]
23: Send(r, preblock, sucblckforrank)
24: end for
25: end for
26: end for
27: end for
28: }
29: end for
Receive preblock,sucblckforrank:

1: p = preblock[0]
2: for each s in sucblckforrank do
3: lowerbound = {x|x ∈ pred(s) and p≤ x}
4: TC += |preblock∩ lowerbound|
5: end for

be equally distributed among threads irrespective of the degree distribution of the input

graph.

The proposed algorithms (Algorithm 18), block the predecessor set (set1) of a vertex

and the successor set (set2) of a vertex. In the basic PSP triangle counting algorithm, a

predecessor set of a vertex is sent to each of its successors. By blocking and grouping
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Algorithm 18 Generalized Triangle Counting Algorithm with Blocking & Grouping

TC Glocal = (V,E),setablksz,setbblksz,nthreads:
1: for each parallel thread : tid in nthreads do
2: epoch {
3: for each v in V do
4: if (|set1(v)|== 0) or (|set2(v)|== 0) then
5: continue;
6: end if
7:
8: offset = (v + tid) % nthreads;
9: nsetablks = (|set1(v)|+ setablksz−1) / setablksz

10: nsetbblks = (|set2(v)|+ setbblksz−1) / setbblksz
11:
12: for (pos = offset; pos < nsetablks; (pos += nthreads)) do
13: setastart = pos * setablksz
14: setaend = min(setablksz, (|set1(v)|-setastart)) + setastart
15: preblock = {x|x ∈ set1(v) & (setastart≤ indexof(x)< setaend)}
16: for (setbpos = 0; setbpos < nsetbblks; setbpos++) do
17: setbstart = setbpos * setbblksz
18: setbend = min(setbblksz, (|set2(v)|-setbstart)) + setbstart
19: setbblock = {x|x ∈ set2(v) & (setbstart≤ indexof(x)< setbend)}
20: rankgroups = group-by-rank(setbblock)
21: for each r in ranks do
22: setbblckforrank = rankgroups[r]
23: Send(r, preblock, setbblckforrank)
24: end for
25: end for
26: end for
27: end for
28: }
29: end for
Receive setablock,setbblckforrank:

1: p = setablock[0]
2: for each s in setbblckforrank do
3: lowerbound = {x|x ∈ set1(s) and p≤ x}
4: TC += |setablock∩ lowerbound|
5: end for

successors of a vertex, (set2), we send a predecessor block together with multiple successor

vertices to the same rank (Using PSP as an example). Then, the receiving rank can reuse

the predecessor block to do set intersection with several predecessor sets of the successor

vertices. This approach achieves better cache utilization because the predecessor block is

re-used. This applies to all algorithms. Table 9.2 compares the cache utilization of the basic
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Block Size D1 Hit/Miss(%) D2 Hit/Miss(%)
10 87.1/12.9 53.7/46.3
80 93.7/6.3 54.9/45.1
340 96.2/3.8 59.1/40.9

TABLE 9.3. Cache utilization of SSS algorithms with increasing block size.
Values are average across the number of threads.

Block Size Bytes Communicated
10000 16842970024
1000 17927870248
100 29910155304

TABLE 9.4. Block size vs. Number of bytes communicated. SPS algorithm
with Graph500, Scale 23 graph input and experiments run on four nodes.

SSS algorithm with the blocked SSS algorithm. As can be seen in Table 9.2, the blocked

SSS algorithm gets better utilization of level 2 data (D2) cache (same behaviour is seen in

other algorithms). This is mainly because of the for loop in “Receive” functions. However,

increasing successor block size would cause load imbalance as the number of vertices loop

in increases. Therefore, by adjusting the successor (or set2) block size we can achieve better

cache utilization while minimizing the load imbalance.

Smaller block sizes achieve better balancing of work among parallel threads. However,

smaller block sizes tend to reduce the cache utilization. Table 9.3 shows the cache utiliza-

tion of the SSS algorithm with increasing block sizes (both set1 and set2 block sizes are set

to value in the table). As can be seen in Table 9.3, when we increase the block size we see

better cache utilization.
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FIGURE 9.7. Block example.

9.4.2. Block Size in Distributed-Memory. In

distributed execution, smaller block sizes generate

more messages. To explain this better, consider the

example in Figure 9.7. In this example, we are send-

ing set X to the owner of Y . Suppose all the elements

of Y belong to the same owner. In a basic algorithm

(without blocking) we would send X +Y number of

vertices, but in the blocked version we need to send each x size block with each y size block.

Not only we are sending dX/xe ∗ dY/ye number of messages, but also smaller block sizes

increase the number of bytes transferred over the network. Therefore, as per Figure 9.7, the

algorithm needs to send each x block with all y blocks; this needs to repeat for each y block.

Therefore, the total number vertices transferred is (Y + x×Y/y)×X/x = XY (1/x+1/y). As

per the equation, when we decrease the block size, (x or y), the number of vertices trans-

ferred increases. Table 9.4 experimentally shows how the number of bytes communicated

over the network increases with the small block sizes.

While vertex blocking and grouping helps to alleviate the load imbalance in shared

memory and reduces the number of messages in distributed memory we still see quite a

significant number of messages transferred over the network. In Power-law graphs we

see fewer high-degree vertices and a larger number of low-degree vertices. There will be

at least one message send call per each of the lower-degree vertices. Therefore, algorithm

execution still generates a large number of messages when processing a power-low graph.

To further reduce the latency overhead incurred by small messages, our next step was to

introduce block aggregation.

9.4.3. Block Aggregation. The overhead of sending each of the small messages (less

than the size of a block) to a destination is high compared to sending a large message

with several of those smaller messages. To reduce the network overhead of sending small

messages we use block aggregation.
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The size of a block is not fixed and depends on the block size as well as the degree

distribution of vertices. To aggregate blocks, we maintain a buffer of bytes per each des-

tination rank. In the send call of an algorithm (e.g., Line 23 in Algorithm 18), block is not

directly sent to the destination rank, rather it is stored in a buffer relevant for the intended

destination rank. The maximum block size is configurable and specified in the number of

bytes.

T0 T1 T2 T3 …

R0 R1 R2

FIGURE 9.8. Block aggregation for
four destination ranks. Threads
add blocks to different destination
buffers.

When a buffer receives a message that cannot

fit into the buffer without exceeding the maximum

buffer size, the algorithm sends the buffer to the

destination and then the buffer is flushed. Paral-

lel shared memory threads store blocks in destina-

tion rank buffers. Concurrent access to the buffer is

achieved using atomic operations. When a thread

attempts to add a block to a destination buffer

while the buffer is being sent to the destination, the

thread is suspended until a send operation is called.

Further, we use non-blocking send-receive operations in our code (i.e., MPI Isend &

MPI Irecv). Therefore, the time a thread has to wait until an aggregated buffer is trans-

ferred is minimized. Figure 9.8 shows the block aggregation of a triangle counting algo-

rithm running in four ranks. The picture shows the block aggregation in fourth rank and

it maintains three outgoing buffers: one per each remote rank. Threads write to buffers as

blocks are generated.

Block aggregation reduces the latency overhead of sending large numbers of small

messages. We saw a performance benefit with block aggregation even at very small graph

scales. For example, Graph500 scale 13 graph on four ranks takes 7.01 seconds to run

“blocked PSP” algorithm and takes 29 seconds to run “blocked SSS” algorithm. With block

aggregation both algorithms run in a less than a second.
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9.5. Degree based Partitioning

The performance of distributed, shared-memory parallel triangle counting algorithms

can be further improved by reducing the number of bytes transferred over the network.

For example, in PSP algorithm, the number of bytes transferred over the network can be

reduced by reducing the size of the predecessor set, because the algorithm sends the same

predecessor set to multiple ranks (where successor groups are located). To reduce the size

of the duplicating set (e.g., predecessor set in PSP) to every rank, we use a degree based

neighbor partitioning scheme.

Traditionally, triangle counting algorithms partition neighbors using lexicographical

comparison. In the proposed approach we partitioned neighbors based on the degree of

the vertices. For the PSP algorithm, if a vertex neighbor’s degree is higher than the vertex’s

degree, then we add the neighbor to predecessor set. If the neighbor’s degree is less than

the vertex’s degree, we add that to the vertex’s successor set. If the neighbor’s degree is

equal to the vertex’s degree we perform a lexicographical comparison on vertex ids and

add the neighbor to either to the successor set or the predecessor set.

The degree partitioned PSP algorithm is listed in Algorithm 19. This algorithm consists

of two super-steps. In the first super-step (Line 1–Line 8), the algorithm iterates over all the

vertices and exchanges the degrees of the vertices. The SendDegree (Line 5) function will

call the ReceiveDegree (Algorithm 19) function in the same rank or in a different rank. The

SendDegree call sends local vertex v and v’s degree to its neighbor u. When the neighbor(u)

receives the degree and the vertex, it first checks whether the received degree is less than its

degree; if so, the received vertex is added as a successor of u (See Line 2 in ReceiveDegree);

otherwise v is added as a predecessor of u (ReceiveDegree, Line 4). If degrees are equal,

then we compare vertex ids to decide whether a neighbor is a successor or predecessor

(ReceiveDegree, Line 6–Line 10).

With degree partitioning we cannot use the CSR data structure to extract the predeces-

sor set and successor set for a vertex (as in Figure 9.2, Section 9.3). Therefore, to collect

the predecessor set and successor set for each vertex a concurrent data structure (an append
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buffer) is used. Two instances of the concurrent data structure is maintained per every local

vertex. The first instance stores the predecessors and the second instance stores the succes-

sors. In the first super-step of the algorithm, append buffers for a vertex maybe modified

by more than one parallel thread. However, after first super-step we do not need to mod-

ify the append buffer concurrently. Even though we partition vertex neighbors based on

degrees, our set intersection comparison is based on vertex identifiers (an additional con-

version function in set intersection reduces the performance as it tends to reduce cache

utilization). Therefore, after calculating predecessors and successors per each vertex, they

are locally sorted (See Line 9–Line 12).
Algorithm 19 Degree Partitioned PSP Algorithm

PSP Glocal = (V,E),predblksz,sucblksz,nthreads:
1: epoch {
2: for each v ∈V in a parallel thread do
3: for each u ∈ neighbors(v) do
4: dv = degree(v)
5: SendDegree(u, v, dv)
6: end for
7: end for
8: }
9: for each v ∈V in a parallel thread do

10: sort(pred(v))
11: sort(succ(v))
12: end for
13: ...
14: Rest of code is same as Algorithm 17, PSP (Line 1–Line 29).
ReceiveDegree u,v,dv:

1: if dv < degree(u) then
2: succ(u).insert(v)
3: else if dv > degree(u) then
4: pred(u).insert(v)
5: else
6: if u > v then
7: succ(u).insert(v)
8: else
9: pred(u).insert(v)

10: end if
11: end if
Receive preblock,sucblckforrank:

1: Same as code in Algorithm 17, Receive (Line 1–Line 5).
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FIGURE 9.9. An example DAG and predecessors and successors counts.
With the predecessor-successor relationship we can depict the whole graph as a DAG

(Figure 9.9). Algorithm 19 makes sure that a predecessor of a given vertex has a higher

degree than its own degree. This way, Algorithm 19 makes the highest degree vertices

sources of the induced DAG. Also, a vertex has fewer number of predecessors than its

successor. In other words, sources have higher number successors, but they have zero pre-

decessors, and sinks of the induced DAG have the least number of successors and highest

number of predecessors. Since the partitioning scheme minimizes the number of prede-

cessors, it is favourable for the PSP algorithm. For SPS and SSS algorithms, comparisons

in the “ReceiveDegree” function must be switched.

9.6. Results

The proposed changes (vertex blocking, block aggregration and neighbor partitioning

based on degree) to distributed-memory parallel triangle counting algorithms (PSP, SPS,

SSS, PPP) improves the performance of distributed memory parallel triangle counting and

minimizes the pre-processing overhead. The remainder of this section will present and

explain experimental results to demonstrate this claim.

We ran our experiments on a Cray XC system that has 2 Broadwell 22-core Intel Xeon

processors. Our experiments only used up to 16 cores to uniformly to double the problem

size and to double the number of processors in weak scaling. Each node consists of 128 GB
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Graph Vertices Edges
Friendster 6.83E+07 2.59E+09
Twitter 4.17E+07 1.47E+09
Orkut 3.07E+06 1.17E+08
RMAT-1(25)(rmat1) 3.36E+07 5.37E+08
RMAT-2(25)(rmat2) 3.36E+07 5.37E+08

TABLE 9.5. Graph inputs and their attributes used in strong scaling experiments

DDR4-2400 memory. We use a MPI+PThread, distributed shared-memory runtime. The

MPI implementation is Cray MPICH (version 7.4.4).

We evaluate the triangle counting algorithms in terms of strong scaling and weak scaling.

For weak scaling experiments, we use R-MAT [23] synthetic graphs. Two types of RMAT

synthetic graphs are used. They are: 1.RMAT-1: Graphs based on the current Graph500

[104] Breadth First Search benchmark specification with R-MAT parameters A = 0.57, B =

C = 0.19 and D = 0.05, and, 2.RMAT-2: Graphs generated based on the proposed Graph500

[56] SSSP benchmark specification with R-MAT parameters A = 0.50, B =C = 0.1 and D =

0.3.

In the following sections, the algorithm names starting with “Opt-” are the algorithms

that partition neighbors based on vertex degrees (similar to Algorithm 19). Algorithms that

do not have the “Opt-” prefix partition neighbors by vertex ids (similar to Algorithm 17).

9.6.1. Graph Data Distribution Selection. As stated in Section 9.3.1 we used 1D dis-

tribution to distribute vertices among processes. In 1D distribution vertex identifiers can

be permuted in several ways. We first experimented with two types of permutations: 1.

assign contiguous numbers of vertex identifiers to each node (1D block distribution); and, 2.

assign vertex identifiers to nodes in round-robin fashion (1D cyclic distribution). These two

approaches are depicted in Figure 9.10.

Our initial results showed that the distributed load imbalance is higher when we use

the 1D block distribution (Figure 9.10a) compared to 1D cyclic distribution (Figure 9.10b).

Figure 9.11 shows the number of comparisons performed in set intersection on a rank

when running PPP and Opt-PPP algorithms (on eight ranks). When PPP algorithm is run
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FIGURE 9.10. 1D block distribution and 1D cyclic distribution. “Ni” is rank id.
with block distribution, the number of comparisons performed by each rank is signifi-

cantly different. However, when we use cyclic distribution, the number of comparisons

are not skewed as with block distribution.

The triangle counting algorithms discussed in this chapter use vertex ids to partition

neighbors into successors and predecessors, and one of these sets is sent to the owner

nodes of the vertices in the other set. For example, PSP (Algorithm 17) sends the pre-

decessor set of a vertex to its successor’s owner’s nodes. Since block distribution stores

a contiguous number of vertices in a node, more messages are sent to nodes that store

greater vertex ids. If we use the block cyclic distribution, messages are not centered on a

particular node, but rather, work is divided among participating nodes.

The distributed load imbalance is minimized in optimized algorithms (like Algorithm 19),

when they are used with the cyclic distribution. These optimized algorithms push higher-

degree vertices to a corner of the DAG, and distribute the set intersections equally, signifi-

cantly reducing the load imbalance. Figure 9.11 shows the set comparisons performed on

each rank for Opt-PPP algorithm and as can be seen in the plot, the number of compar-

isons are almost evenly distributed. Therefore, we used 1D cyclic distribution in all our

experiments.

9.6.2. Weak Scaling Results. Weak scaling results for triangle counting algorithms are

shown in Figure 9.12. Triangle counting is not a linear time (O(N)) algorithm (See [80] for

details). Therefore, we do not see constant time scaling, independent of the number of

processors for algorithms that partition neighbors by vertex ids (i.e., PSP, PPP, SPS, SSS).

However, degree partitioned algorithms show much better scaling behavior.
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FIGURE 9.11. Total set comparisons performed on ranks for PPP algorithm
with block and cyclic distributions, Opt-PPP algorithm with cyclic distribu-
tion. Input graph : RMAT-1, Scale 24. Threads per rank is 16.

Execution Algorithm Time
(sec.)

Set
Comparisons

Bytes

In-node PPP 72.68 6.43E+11 –
Opt-PPP 31.66 1.70E+11 –

Distributed PPP 21.03 8.11E+11 9.01E+09
Opt-PPP 8.20 1.70E+11 3.86E+09

TABLE 9.6. Number of set-comparisons and network bytes transferred in
PPP and Opt-PPP for Scale 23 Graph500 input.

Table 9.6 shows the total number of set comparisons in PPP and Opt-PPP algorithms

for scale 23, Graph500 input. Shared-memory data is for execution with 16 parallel threads,

and distributed execution is for four rank each executing 16 parallel threads. As can be

seen in the table, the number of set comparisons for normal PPP algorithms is nearly six

times higher than the number of set comparisons for Opt-PPP algorithm. For distributed

execution, the number of bytes transferred by the normal PPP algorithm is nearly 2.5 times

higher than degree based neighbor partitioned PPP. Also, note that there is not much

difference in the number of set comparisons between shared memory execution and dis-

tributed memory execution for algorithm Opt-PPP. On the other hand, in PPP algorithms

the distributed, shared-memory total set comparisons is higher than the total set compar-

isons for shared memory.

The degree-based neighbor partitioning algorithm pushes high degree vertices into a

corner of the DAG (See Figure 9.9), minimizes the number of set intersections, and min-

imizes the amount of data to be transferred. Also, we do not see much difference in the

number of set comparisons for shared memory and distributed memory because the sets
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FIGURE 9.12. Optimized and non-optimized triangle counting algorithms
weak scaling results for RMAT-1 and RMAT-2 graphs. Shaded region
shows the shared memory execution.

(set1 and set2, e.g., pred for PPP algorithm) are small. Sets are small for Opt-PPP because

of the degree partitioning. When small set sizes are closer to the block size(s) a minimum

amount of data are duplicated (See the discussion in Section 9.4.2). The PPP algorithm pre-

decessor set sizes are greater than block size, and because of that the same block processed

multiple times. Therefore, in distributed settings the total number of set comparisons in-

creases for normal algorithms (i.e., algorithms without “Opt-”).

9.6.3. Strong Scaling Results. For strong scaling experiments, we ran degree parti-

tioned triangle counting algorithms on graphs listed in table 9.5 over 1–1024 cores. To

gain a better understanding about how algorithms scale relative to each other, we mea-

sured Relative Speedup,= Tre f 1
Tn

i.e., the ratio of the execution time of the fastest sequential

algorithm, Tre f 1 and the parallel execution time on n processing elements, Tn.
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FIGURE 9.13. Strong scaling results.
Figure 9.13 shows strong scaling results for graphs listed in Table 9.5. As shown in

Figure 9.13 all the graphs show better strong scaling behaviours for degree partitioned al-

gorithms. We see that for the Twitter graph the Opt-PSP and Opt-SPS performs better than
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Opt-PPP and Opt-SSS. For the Twitter graph, both Opt-PPP and Opt-SSS algorithms send

more bytes over the network than Opt-PSP and Opt-SPS (e.g., on 64 nodes Opt-PPP sends

3.07E+11 bytes and Opt-PSP sends 2.45E+11 bytes). Therefore, we see that for Twitter

graph Opt-SPS and Opt-PSP, algorithms are slightly better than Opt-PPP and Opt-SSS.

9.6.4. A Comparison with PowerGraph. PowerGraph [55] implements two undirected

triangle counting algorithms: simple undirected triangle counting (Power-Simple UTC), and,

and undirected triangle counting (Power UTC). Our initial intention was to perform weak

scaling for these two triangle counting programs with Graph500 input. However, we ob-

served that both of the triangle counting applications fail with an out of memory error at

Graph500 scale 27 and higher in distributed execution. Therefore, we compare the per-

formance of PowerGraph triangle counting algorithms with degree partitioned triangle

counting algorithms with the maximum scale PowerGraph can run in distributed execu-

tion for a given number of nodes.

Figure 9.14 shows the comparison results. Overall, the PowerGraph undirected tri-

angle counting algorithm performs better than the PowerGraph simple undirected trian-

gle counting algorithm. We see that the undirected triangle counting algorithm shows

better performance than the degree partitioned triangle counting algorithm in sequential

execution, but in all other executions the degree partitioned algorithms outperform Pow-

erGraph triangle counting algorithms. The performance difference between PowerGraph
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triangle counting algorithms and degree partitioned triangle counting algorithms is higher

at larger scales.

PowerGraph uses Gather-Apply-Scatter (GAS) primitive to perform computations. The

undirected triangle counting algorithm (Power UTC) performs better than “Power-Simple

UTC” algorithm. According to the logic implemented, the Power-UTC is a hash set ver-

sion of the triangle counting algorithm in [121]. The implementation maintains a list of all

of its neighbors in a hashed set. For each edge (u, v) in the graph algorithm counts the

number of set intersections of the neighbor set on u and neighbor set on v and stores the

number of intersections on each edge. This algorithm counts each triangle three times.

Algorithms proposed in this chapter count triangles only once. Therefore, the number

of set intersections are low compared to Power-UTC implementation. Further, Power-UTC

shows poor weak-scaling behavior. Also, Power-UTC implementation does not perform

operations to reduce the message latency (e.g., aggregation or blocking) and load imbal-

ance.

9.7. Summary

Triangle counting algorithm performance on hybrid runtimes tends to suffer due to

in-node load imbalance, high message communication and poor cache utilization.

In this chapter, we showed that different triangle counting algorithms can reduce in-

node load imbalance and improve cache utilization by blocking vertices. For distributed

execution the block aggregation alleviates the overhead of sending many small messages

to a destination. To further reduce the number of set comparisons in set intersection and to

reduce the amount of remote communication we presented degree-based vertex neighbor

partitioning approach for triangle counting algorithms that consists of two super-steps. In

Section 9.2, we showed that different triangle counting algorithms can be modeled using a

generic framework, and showed how these techniques are applicable to the generic model

and hence to all triangle counting algorithms presented in Section 9.2.

The performance results show that the presented algorithms scale well with the prob-

lem size as well as with the number of parallel processors. Further, the comparison with
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PowerGraph triangle counting algorithms demonstrate that presented algorithms outper-

form PowerGraph triangle counting algorithms both in terms of time and space.
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10

Runtime API for AGM

AGM abstractly models orderings in asynchronous parallel graph algorithms. An imple-

mentation of the AGM model has to interface with a parallel (distributed) runtime. In

this chapter, we discuss how an AGM/EAGM framework can interface with a distributed-

memory parallel runtime. We also outline the functionality the framework requires from

the underlying runtime as an Application Programming Interface (API).

In addition to the API we also discuss some of the important runtime parameters and

design choices that may affect the performance of AGM/EAGM algorithms. Distributed

message communication with or without message aggregation, thread allocation for commu-

nication and computation, are examples of important design choices and max messages to

aggregate. Flow control value is also an important parameter that affect the performance

of AGM/EAGM algorithms.

10.1. The Runtime

Graph 
Distribution

Distributed 
Communication

Thread 
Management Synchronization

AGM/EAGM Framework

Runtime

FIGURE 10.1. Layered design of the AGM framework on top of a runtime.

The AGM framework assumes an existence of a distributed-memory parallel runtime.

The framework is built on top of this runtime. The interaction between the runtime and the
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AGM framework is depicted in Figure 10.1. The runtime provides the following services

to the AGM framework:

(1) Graph data distribution

(2) Distributed communication

(3) Thread management: including the management of Non-Uniform Memory Ac-

cess (NUMA) nodes

(4) Synchronization

(5) Termination

10.1.1. Graph data distribution. In a practical execution environment, the workitems

generated by a processing function in one node need to be traversed to a processing func-

tion in another node. The runtime is responsible for transporting workitems in one node to

another node.

The runtime decides which node the workitem should be transported to, based on a

distribution. There are two main strategies to distribute graph data. They are:

(1) 1D distribution – distribute vertices across participating nodes

(2) 2D distribution – distribute edges among participating nodes

We find further variations of each distribution, e.g., 1D distribution can be further clas-

sified into the following distributions:

(1) 1D-block distribution

(2) 1D-cyclic distribution

(3) 1D-random distribution
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FIGURE 10.2. Comparison of different 1-D graph data distributions.

The 1D-block distribution divides total vertices equally among processes and allocates

a contiguous range of vertex numbers to each process (Figure 10.2a). The 1D-cycle distri-

bution also distributes vertices equally among participating nodes but allocates vertex IDs

to nodes in a cycle. For example, in a two node system, 1D cycle distribution allocates ver-

tex 0 to node0 allocate vertex 1 to node1, then again assigns vertex 2 to node0 and assigns

vertex 3 to node1 etc. This is shown in Figure 10.2b. The 1D-Random distribution allocates

vertex IDs to nodes based on a random distribution (Figure 10.2c).

These different graph distributions impact performance differently. These impacts are

discussed in future chapters. As far as the AGM framework is concerned, the runtime

provides an interface similar to the following:

LISTING 10.1. The workitem routing code.

1 struct routing_function {

2 template<typename work_item>

3 int operator(const work_item& wi)() {

4 //calculates the node id for wi

5 }
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6 };

.

In Listing 10.1 the routing function calculates the node id the workitem should be routed

to. The logic for routing function depends on the specific distribution used in the runtime.

10.1.2. Distributed Communication. Based on the graph data distribution, the run-

time is responsible for sending workitems to the appropriate destinations. Put simply, each

workitem is wrapped into a message and sent to its destination.

10.1.2.1. Message Aggregation. The runtime has the option of performing optimizations

such as collecting number of workitems into a single large message that is sent to a destina-

tion. This process reduces the latency overhead of sending every single message over the

network. This process of collecting multiple workitems into a single large message is called

message aggregation.

For aggregation, a node maintains a buffer of workitems for every destination. A buffer

can be updated by several parallel and concurrent threads (Figure 10.3). In Figure 10.3, the

node N0 has buffers for nodes N1, N2, N3 and these buffers are concurrently updated by

thread T0, T1, T2, and T3. The concurrent updates can be implemented using either atomic

operations or locks. The runtime that is used to implement the AGM framework described

in this thesis uses atomic operations to handle concurrency.

How multiple workitems aggregate is defined using a configuration. When buffers

reach the configured value, the whole buffer is wrapped into a message and sent over

the network. A buffer may also be partially sent (before reaching the configured number

of workitems) if the algorithm runs out of sufficient workitems to process.

However, we cannot use this exact strategy when the size of a workitem is not fixed. For

example, in triangle counting (Chapter 9) we will use workitems of variable sizes. When the

workitem size is variable, we must use a specific number of bytes to aggregate. Likewise,

when a buffer reaches that amount of bytes, the buffer is sent to the destination. More

details about this aggregation method are discussed in Section 9.4.3.
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T0 T1 T2 T3
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FIGURE 10.3. Node N0 doing message aggregation for nodes N1, N2, N3.
The aggregation buffers are concurrently modified.

10.1.2.2. Self-Sending. When a particular workitem is destined for the same node (i.e.,

the owner node of the workitem is same as where the workitem was generated), the run-

time has the option of calling the processing function directly without routing through the

network. We call this process self-sending. The performance of certain algorithms changes

based on whether Self-Sending is enabled or not. These performance behaviors will be

discussed in future chapters.

10.1.3. Thread Management. The runtime is responsible for creating parallel threads

as well as terminating the threads. The number of threads depends on the number of cores.

Every thread has a numerical identifier and threads are grouped based on the spatial levels.

The majority of the irregular applications are communication-bound applications. There-

fore, applications with non-blocking communication performs better compared to applica-

tions with blocking communication (when communication is non-blocking, the application

can attempt to perform more computations while the communication is taking place and

hence can improve the compute/communication ratio). There are three common models

that handle non-blocking communication in threads. They are:

(1) Every thread sends and receives workitems
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(2) There are dedicated threads to execute processing function and to do ordering as

well as other dedicated threads to send and receive workitems

(3) There are dedicated threads to execute processing function and to do ordering as

well as other dedicated threads to send workitems. There are separate threads that

receive workitems. (i.e., same thread will not both send and receive workitems).

T0 T1 T2 T3 T4 T5

Send

Receive & processing function 
invocation

{Flow 
Control

FIGURE 10.4. Every thread performs sending and receiving workitems and
also executes processing functions.

Figure 10.4 shows the first model in which every thread performs sending, receiving

and processing function invocation. In this model, a thread sends up to N number of

workitems and then starts receiving workitems and invoking processing functions. We call

this N the the flow control value. Figure 10.4 assumes that there is only one destination, but if

we have to maintain multiple destinations we will have multiple flow controls maintained,

one per every destination.

154



www.manaraa.com

T0 T1 T2 T3 T4 T5

Send

Receive

Shared Send
Queue
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FIGURE 10.5. Only two threads perform sending and receiving workitems
and other threads execute the processing function.

Figure 10.5 shows how dedicated send/receive threads operate. All the other threads,

other than dedicated send/receive threads, perform processing function invocation. The

dedicated send/receive threads and compute threads (threads that execute the processing

function and ordering) communicate via a shared buffer. There are two buffers; one to

exchange send workitems and another to exchange received workitems.

T0 T1 T2 T3 T4 T5

Send

Receive

Shared Send
Queue

Shared Receive
Queue

Processing
Function

FIGURE 10.6. There are dedicated threads that perform sending and other
dedicated threads to perform receiving.
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The third model of computation and communication is shown in Figure 10.6. This

model is similar to the model presented in Figure 10.5 with the exception that it has dedi-

cated threads for sending workitems and also a dedicated set of threads to receive workitems.

10.1.3.1. Thread Allocation to Spatial Domains. A spatial domain specifies a region of

memory. For some parallel threads, accessing a particular memory region is more efficient

compared to other parallel threads. For example, Figure 10.7 shows spatial memory di-

vision in a typical super-computing cluster. For this example, we only considered three

compute nodes. The memory belonging to all the nodes is the global memory. The mem-

ory local to a node is the node level memory. For this particular example, each node has

two NUMA domains. Therefore, memory local to a NUMA domain is the NUMA spatial

level gives us a thread memory where an application keeps thread local data.

T0 T1 T2 T3 T4 T5

N0

Global
Spatial Level

Node
Spatial Level

NUMA
Spatial Level

Thread
Spatial Level

numa0 numa1

T0 T1 T2 T3 T4 T5

N1
numa0 numa1

T0 T1 T2 T3 T4 T5

N2
numa0 numa1

FIGURE 10.7. The spatial memory division.

For the example given in Figure 10.7, the thread T0 is assigned to node N0 and NUMA

domain numa0. The runtime interface has functions to query information about spatial

levels for a given thread ID.

Assigning threads to specific spatial regions is performed at the application bootstrap.

For some spatial levels, this is trivial (e.g., node level threads). For other spatial levels,

such as NUMA, the runtime needed to do the required pre-processing to decide which

thread belongs to which NUMA domain.
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FIGURE 10.8. Pinning threads to cores to achieve NUMA spatial locality.

Figure 10.8 shows a processor with NUMA memory. As shown in the figure, there

are two NUMA nodes and there are eight cores that are closer to each NUMA memory.

The runtime that we used to implement the AGM framework, pins the threads to the

cores to avoid any overhead from thread migration. Threads T0–T7 are pinned to cores in

NUMA node 0 and threads T8–T15 are pinned to cores in NUMA node 1. The runtime is

responsible for pinning threads to cores and for building the mapping between the cores

and threads. More specifically, the AGM framework requires the following functionality

from the runtime, related to NUMA spatial level:

LISTING 10.2. Runtime functions for querying NUMA domain details.

1 // returns the NUMA node id closer to given thread id

2 int find_numa_node(int tid){...}

4 // returns the number of threads in the NUMA domain where tid is
in

5 int get_nthreads_for_numa_domain(int tid){...}

7 // the thread index of tid within the NUMA domain it is in
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8 // e.g., T12 has index 4

9 int get_thread_index_in_numa_domain(int tid) {

11 // Every NUMA domain has a leader thread. Generally,

12 // the smallest index thread is the leader. This function call returns

13 // true if tid is the leader thread for the NUMA domain tid is in.

14 // e.g., T0 is the leader for NUMA node 0 and T8 is the leader

15 // for NUMA node 1.

16 bool is_main_thread_in_numa_domain(int tid) {..}

.

More generally, for a given spatial domain the AGM framework query following in-

formation from the runtime interface is as follows:

LISTING 10.3. Runtime functions for querying a general spatial domain details.

1 // returns the spatial domain id for the given thread id

2 int find_spatial_domain_node(int tid){...}

4 // returns the number of threads in the spatial domain where tid
is in

5 int get_nthreads_for_spatial_domain(int tid){...}

7 // Every spatial domain has a leader thread. Generally,

8 // the smallest index thread is the leader. This function call returns

9 // true if tid is the leader thread for the spatial domain tid is
in.

10 bool is_main_thread_in_spatial_domain(int tid) {..}

.

10.1.4. Synchronization. To make sure all participating parallel threads have finished

processing an equivalence class before processing the next equivalence class, the AGM
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framework must synchronize all parallel threads at the end of processing an equivalence

class. In a similar fashion, the EAGM framework also needs to synchronize after process-

ing an equivalence class for a given spatial level. Therefore, synchronization is required at

different spatial levels and thus, the underlying runtime is responsible for implementing

synchronization primitives. For the AGM framework implementation discussed in this

thesis, the required runtime API for synchronization is given in Listing 10.4.

LISTING 10.4. Runtime functions for synchronization

1 // Performs global synchronization

2 void synchronize(int tid){...}

4 // Synchronize only the threads in the local node

5 void wait_for_threads_to_reach_here(int tid){...}

7 // Synchronize only the thread that are in the NUMA domain that tid

8 // is in

9 void wait_for_numa_domain_threads_to_reach_here(int tid) {...}

In Listing 10.4, Line 2 performs global synchronization and Line 5 performs node level

synchronization. Line 9 synchronizes only the threads that are in the NUMA domain

pinned to the thread id tid. The threads that do not belong to the tid’s NUMA domain

are allowed to continue execution.
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T0 T1 T2 T3 T4 T5

{ {numa-0 numa-1

wait_for_numa_domain_threads_to_reach_here(T4)

FIGURE 10.9. Synchronization at NUMA spatial locality.

As shown in Figure 10.9, when we invoke wait for numa domain threads to reach here(T4),

only the threads that are pinned to cores in NUMA node 1 are suspended (until all threads

in that NUMA domain reach the call). The threads that do not belong to NUMA node 1

are not disturbed by this call.

10.1.5. Distributed Termination Detection. Distributed termination detection is used

to identify whether an algorithm has processed all the workitems in an asynchronous graph

algorithm. More specifically, it identifies whether the algorithm has finished processing

all the workitems pertaining to the current equivalence class. The reference [95], discusses

few distributed termination detection algorithms. Out of these algorithms, we use the four

counter termination detection ( [95], Section 4) algorithm.
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Algorithm 20 Distributed Termination Detection Algorithm (On a single node)
1: while not terminated do
2: while not idle do
3: // do processing – ordering and processing function execution
4: //...
5: end while
6: // thread does not have any work ...
7: go to phase 1;
8:
9: phase 1:

10: globalactive← allreduce(active);
11: globalcomplete← allreduce(complete);
12: if globalactive== globalcomplete then
13: go to phase 2;
14: else
15: continue;
16: end if
17:
18: phase 2:
19: globalactive← allreduce(active);
20: globalcomplete← allreduce(complete);
21: if globalactive== globalcomplete then
22: terminated← True;
23: else
24: continue;
25: end if
26: end while

The four-counter termination detection algorithm is given in Algorithm 20. The im-

plementation maintains two counters in each locality: active to maintain the number of

workitems that are generated but not yet processed and complete to maintain the number of

workitems that are processed (i.e., completed executing the processing function). The active

is incremented before pushing a workitem to an equivalence class and complete is increased

when a workitem executes the processing function. When a thread reaches an idle state it

performs a global reduction over the active and complete(Line 10). If they are equal, a re-

duction is carried out for the second time (See phase 2 in Algorithm 20). In both cases, if

counts are equal, the thread decides if the algorithm is terminated (Line 22).

The AGM framework is required to modify the counts of workitems that are generated

and when workitems finish executing processing functions. Therefore, the AGM framework

requires the following API(Listing 10.5) calls from the runtime.
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LISTING 10.5. Runtime functions for modifying termination counts.

1 // increments ‘‘active’’

2 int increment_active_count(int tid){...}

4 // increments ‘‘complete’’

5 int increment_complete_count(int tid){...}

.

10.2. Summary

This chapter discussed the API functions that a runtime should implement to interface

the runtime with an AGM. We also discussed several design choices for certain runtime

features. Some of the important runtime parameters are as follows:

(1) The allocation of threads for communication and computation,

(2) Flow control value,

(3) Whether message aggregation is enabled or not, and if enabled, the size of the

maximum messages to aggregate,

(4) Is self-sending is enabled or not.
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11

AGM Graph Processing Framework

In this chapter, we discuss how we mapped abstract AGM model to a concrete implemen-

tation. Some AGM concepts can be directly mapped to an implementation (e.g., a workitem

can be directly mapped a message) and some of the other concepts required research to

find the suitable implementation (e.g., processing function).

Finding a suitable data structure to store equivalence classes was challenging. We in-

vestigated several data structures to hold equivalence classes under concurrent execution.

This chapter describes details of the data structures we investigated and their experimental

results.

11.1. Implementation of AGM Concepts

The abstract representation of an AGM has the following concepts:

(1) A definition of a Graph

(2) A definition of a set workitem,

(3) A set of states,

(4) A processing function definition,

(5) A strict weak ordering relation,

(6) An initial WorkItems

In the following, I discuss how each of the above concepts is implemented in the AGM

framework.
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11.1.1. The Graph. The processing function makes use of the abstract data type Graph.

The graph is maybe distributed, using a 1D block distribution or using an edge list distri-

bution. The underlying runtime decides how the graph is distributed. In the current im-

plementation, the local graph can be represented using a compressed sparse row format

or adjacency list format.

Graph attributes (e.g., edge weights) are stored as distributed property maps. For ex-

ample, for edge weights, every local edge has a mapping from edge id to the weight. The

AGM framework does not need to access remote edges, whenever there is a requirement

to access an attribute in a remote node, it is formulated as a workitem and sent over the

network.

11.1.2. The set WorkItems. In the framework, a workitem is a tuple. We use C++ std::tuple

interface. The workitems need to be sent from one node to another node. The underlying

runtime needs to serialize the tuple into a message when sending over the network. For

MPI, this is done by registering a message type. New data types need to be registered at

the initialization of the runtime.

11.1.3. The set of States. A state is maintained against a vertex or an edge. In the

implementation, a state is a mapping from a vertex (or edge) to a value type.

11.1.4. The Processing Function. The processing function is implemented as a C++

functor. The functor takes a workitem and a templated argument called outset. In the fol-

lowing, we discuss processing function implementation detail.

11.2. Processing Function Placement

The AGM framework models an algorithm as a processing function and an ordering.

The processing function contains logic to update states and also to generate new workitems.

A workitem generated in one rank may need to be transported to another rank to execute

the processing function. The runtime is responsible for transporting a workitem from one

distributed node to another. The runtime assesses the destination rank by checking the
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FIGURE 11.1. Local data structure in different ranks.
ownership of a workitem. For example, the ownership of a workitem is decided by a vertex

distribution of a graph.

The ordering is performed within each node using a local data-structure. The local

data structure has an element per every equivalence class the ordering generates. After

locally processing all the workitems, all ranks synchronize to assure that they have finished

processing the current equivalence class (Figure 11.1).

The data structure can be populated in two ways: 1. When a rank receives a workitem,

it can first execute the π with the workitem and generate new workitems. The generated new

workitems are populated into the data structure. Then, a workitem from the smallest equiv-

alence class is popped out and sent it to the owning rank. This execution configuration

is called Pre-Order(Figure 11.2a) 2. When a workitem receives a rank, it first inserts that

workitem to the data structure for ordering. Then a workitem is popped out from the small-

est equivalence class and executes the π . The generated workitems are sent to their owner

ranks. We call this execution configuration Post-Order and it is depicted in Figure 11.2b.

Both pre-order and post-order configurations are discussed in detail in Section 11.2.1.

For both pre-order and post-order configurations, the processing function logic is almost

the same. However, there are differences in the way we calculate the initial WorkItems.

The initial WorkItems bootstrap the algorithm. The π processes initial workitems to generate
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Ordering

Runtime

⇡preorder

(A) The processing function placed before order-
ing. Just after a workitem is received, it will exe-
cute the processing function.

Ordering

⇡postorder

Runtime

(B) The processing function is placed after order-
ing but before a workitem is sent to the destination.

new workitems. When state converges to the desired output of the algorithm, processing

functions to stop generating new workitems.

11.2.1. Pre-Order & Post-Order. In pre-order, workitems populated into the data struc-

ture are destined to execute a processing function in a remote rank. Therefore, the initial

WorkItems should also be destined for remote ranks and, thus we need to ensure that the

states are updated appropriately. However, in post-order, the workitems pushed to the or-

dering data structure are processed by the processing functions in the same rank. The

workitems generated by processing functions are then transported to their owner ranks.

Therefore, the initial WorkItems inserted into the data structure are different from pre-order.

s

1

2 3

4

FIGURE 11.3. An
example graph

In summary, in pre-order, workitems inserted into the data struc-

ture may execute a processing function in a different rank. However

in post-order, workitems inserted into the data structure always execute

a processing function in the same rank. For example, consider an SSSP

algorithm and suppose the algorithm is finding the shortest paths in

graph shown in Figure 11.3. Assume s is the source vertex and ver-

tices are distributed as follows: vertices 3, 4 are in rank 0 (R0), vertex s is in rank 1 (R1) and

vertices 1, 2 are in rank 2 (R2). In pre-order, workitems inserted into the data structure prop-

agate state changes to neighbors of the source vertex. The initial WorkItems for the above

example include {wi1,wi2,wi3,wi4}, where each wi j represents a vertex-distance value, i.e.,

wi j = ( j,d j). Further, distance state for s is initialized to 0 (See Figure 11.4).

For post-order execution (Figure 11.5), the initial WorkItems includes only the workitem

generated from the source vertex (i.e., (s,0)). The workitem inserted to the data structure

invokes the post-order processing function on the same rank. For post-order processing
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FIGURE 11.4. Initial WorkItems in pre-order execution.
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FIGURE 11.5. Initial WorkItems in post-order execution.
function to update the state for s and generate new workitems, the distance state for s is

initialized to a very large value.

In the following, we use SSSP as an example to show pre-order and post-order execu-

tion configurations.

11.2.2. Example: Single Source Shortest Path. SSSP application finds the minimum

distance to every vertex from a given source vertex. The pre-order processing function for

SSSP is given in Listing 11.1.

An SSSP workitem is defined as a vertex and a distance. This definition of the workitem

can be used to order work according to distinct distance values (e.g., Dijkstra’s algorithm)

and ∆ range buckets. The SSSP algorithm uses vdistance state to maintain the minimum

distance to a vertex from the source vertex. The distance in the incoming workitem is com-

pared against the stored distance in the state. The distance in the state variable is updated if
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the workitem contains a smaller distance (Line 8). The update is performed using Compare

And Swap (CAS) operation since there can be multiple shared-memory parallel threads

trying to update the same value. The CAS operation returns true upon successful update

of the distance state, or else it returns as false. New work is generated for neighbors if the

distance for a vertex is updated (Line 9). The variable weight is a property that contains the

weight of each edge.

LISTING 11.1. The pre-order Processing function for SSSP
1 typedef std::tuple<Vertex, Distance> WorkItem;
2 struct sssp_pf {
3 void operator()(const WorkItem& wi, int tid, buckets& outset) {
4 Vertex v = std::get<0>(wi);
5 Distance d = std::get<1>(wi);
6 Distance old_dist = vdistance[v], last_old_dist;

8 if(CAS(d, vdistance[v])) {
9 for_each(Edge e : out_edges(v)) {

10 Vertex u = target(e);
11 WorkItem w(u, (d+weight(e)));
12 outset.push(w, tid);
13 }
14 };

The vdistance state is initialized as follows; i.e., vdistance[v]←∞∀v∈V−{s} and vdistance[s]←
0.

The post-order processing functions are similar to pre-order processing functions. How-

ever, instead of inserting workitems to the data structure, they are sent over the network to

a remote rank. For example, the outset.push call in Listing 11.1 (Line 12) is replaced with

Send(w, tid). The Send function is responsible for sending the workitem to the appropriate

destination rank based on the data distribution.

However, in pre-order, the initial state values and initial workitems are generated dif-

ferently. For SSSP, vdistance is initialized to ∞ for all vertices (including the source vertex)

and a workitem with source vertex and 0 distance is pushed into the data structure. Since

the processing function is executed on the same rank for workitems in the data structure,
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Ordering⇡su ⇡gen

if (w’s state is better than state[v])
{
  update state[v] with w’s state
}

if (w’s state is same as state[v])
{
  generate new work for adjacencies 
  of the vertex in w
}

FIGURE 11.6. Separating processing into πsu and πgen.
during the first execution, the source vertex state is updated and new work is generated

for neighbors.

11.3. Split Order Processing

In pre-order, generated work is immediately pushed into the data structure. Since a lot

of workitems could get inserted into the data structure at the same time, the contention on

the data structure is high compared to post-order. In post-order, the generated workitems

are distributed among multiple ranks, therefore the contention is not significant compared

to pre-order.

To get the benefit of ordering further, we propose a way to split the processing into two

logic functions. In Section 11.2, we mentioned that a processing function consists of logic

to update states in the algorithm and also to generate new work for further processing. We

separate the processing into two functions: 1. a function to update states (πsu), and 2. a

function to generate new work (πgen).

When a rank receives a workitem, πsu is invoked before performing the ordering. Con-

sequently, the workitem is inserted into a data structure to do the ordering (Figure 11.6).

Then, if a workitem with a better state value arrives the rank, the state written by a pre-

vious workitem can be updated and we avoid relaxing the previous workitem by having a

condition in the πgen function.
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Separating processing function into πsu and πgen allows us to prune work that may

become redundant during the ordering. Hence, it reduces the number of messages sent

over the network for label correcting algorithms (e.g., ∆-Stepping ) and reduces the number

of computations for label setting algorithms (e.g., FIX MIS). The πsu changes a state related

to a workitem and πgen generates new work for the workitem. For example, in SSSP, when

a workitem arrives at a rank, it first updates the distance state with the distance in the

workitem. Next, the workitem is inserted into the ordering data structure. Then a thread

picks the ordered workitem and generates new work. However, the framework does not

need to generate new work for the workitem, if the value in the distance state is smaller

than the value in the workitem. Through the separation of state update logic and new work

generation logic, framework can prune work.

The framework takes state update and new work generation functions as C++ functors.

Listing 11.2 shows the πsu functor for SSSP. It takes a workitem and updates the distance

state. Since multiple threads may access the distance state, the state update is carried out

using an atomic CAS operation so that the thread that updates the smallest distance will

succeed. CAS returns true if distance state is updated. Once the distance state is changed,

the workitem is pushed into the data structure that performs ordering.

LISTING 11.2. State update function for SSSP
1 struct state_update_sssp_pf {
2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex v = std::get<0>(wi);
4 Distance d = std::get<1>(wi);
5 if(CAS(d, distance_state[v])) {
6 outset.push(wi, tid);
7 }
8 }
9 };

Listing 11.3 shows the new work generation functor for SSSP. The functor compares

the distance associated with workitem and the distance stored in the distance state. If they

are equal work is generated for neighbors of v.

LISTING 11.3. New work generation for SSSP
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1 struct new_work_gen_sssp_pf {
2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex v = std::get<0>(wi);
4 Distance d = std::get<1>(wi);
5 if (d == distance_state[v]) {
6 for_each(Edge e : out_edges(v)) {
7 Vertex u = target(e);
8 WorkItem w(u, (d+weight(e)));
9 outset.push(w, tid);

10 }
11 }
12 }
13 };

⇡su
⇡su
⇡su
⇡su

⇡gen

⇡gen

⇡gen

⇡gen

⇡su
⇡su
⇡su
⇡su

⇡gen

⇡gen

⇡gen

⇡gen

R0

R1

FIGURE 11.7. State update and new work generation processing functions
in two ranks. Four threads per rank.

Figure 11.7 shows how πsu and πgen processing functions are invoked by the framework

in a system that consists of two ranks and four parallel threads per rank. Every computa-

tional parallel thread invokes the πsu and πgen functions. A workitem is consumed by a πsu

and the state is updated. Then, based on the strict weak ordering relation, that particular
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workitem is pushed into the appropriate equivalence class. The πgen processing function

extracts workitems from the top most equivalence class and generates new workitems. The

generated workitems are sent over the network to the appropriate rank.

11.4. Work Statistics

To further analyze the performance of different placements in processing logic we

gather four different types of work statistics.

(1) Useful Work: If a workitem changes the state, and if no other work item overrides

the state change made by this workitem, then it is useful.

(2) Rejected Work: If a workitem does not change the state, then it is a rejected work.

(3) Invalidated Work: If a workitem changes the state but another workitem overrides the

state change made by the first workitem, then the first workitem is invalidated.

(4) Invalidated Cancel Work: If an invalidated workitem does not generate new work,

then the current workitem is an invalidated cancel work. The pre-order and post-

order execution configurations always generate zero Invalidated Cancel Work. How-

ever, split-order may generate Invalidated Cancel Work.
Algorithm 21 Work statistic generation.
state update workitem w, State s :

1: v← get vertex(w)
2: if w changing s[v] then
3: if s[v] is changed for the first time then
4: increment Useful Work
5: else
6: increment Invalidated Work
7: end if
8: else
9: increment Rejected Work

10: end if
new work gen workitem w, State s :

1: v← get vertex(w)
2: if s[v] is not changed since it was update by w then
3: generate new work
4: else
5: increment Invalidated Cancel Work
6: end if
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Execution Useful Rejected Invalidated Inv. Cancels Add. Work
split-order 7367998 264092439 9771286 9749952 21334
pre-order 7367998 399551016 2469025 0 2469025
post-order 7367998 388691665 2284918 0 2284918

TABLE 11.1. Work statistics for scale 24 Graph500 graph on two ranks.

The work statistic calculation algorithm is given in Algorithm 21 for a general algo-

rithm that executes with the split-order execution configuration. However, the work sta-

tistics calculation logic inside the state update (Algorithm 21) function applies to pre-order

and post-order execution configurations as well. As described earlier if a workitem is chang-

ing an associated state for the first time we increment the Useful Work (Line 4). If a workitem

is over-writing a state value (Line 6) the algorithm increments the Invalidated Work count.

If a workitem does not change the state at all, then that workitem is a Rejected Work workitem.

A portion of the generated Invalidated Work gets filtered out at the new work gen func-

tion (Algorithm 21). When processing a workitem in the new work gen function, if the state

changed by the workitem is updated with a better state value by another workitem, the al-

gorithm increments the Invalidated Cancel Work count (Line 5). The Invalidated Cancel Work

statistic is only applicable to the split-order execution configuration. Also, it is impor-

tant to note that new work is only generated for the amount of ((Invalidated Work +Useful

Work)-Invalidated Cancel Work).

The split-order configuration eliminates the most amount of redundant work in al-

gorithm execution. Table 11.1 shows the work statistics for execution of Dijkstra’s SSSP

algorithm on a Graph500 scale 24 graph on two ranks. As mentioned above, the Inval-

idated Cancel Work for pre-order and post-order are zero. All execution configurations

perform the same amount of Useful Work work. The split-order execution performs the

most amount of Invalidated Work work. However, most of the Invalidated Work performed

by split-order get canceled at the πgen function. Therefore, split-order generates the least

amount of additional work (See “Add. Work” column). Here “Add. Work” is equal to

(Invalidated Work- Invalidated Cancel Work).

Table 11.2 shows the execution time for each configuration and the number of inserts

into the data structure. As demonstrated, the split-order is the fastest and performs with
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Execution Time(sec.) Inserts
split-order 14.54 17139284
pre-order 62.55 409388039
post-order 44.09 398344581

TABLE 11.2. Run times for different execution orders.

the fewest inserts to the data structure. Since split-order eliminates most of the additional

work it is also able to reduce the contention on the data structure.

As per Table 11.2, post-order performs better than pre-order. In pre-order, workitems

are inserted into the data structure immediately after being generated. However, in post-

order, generated workitems are distributed among ranks and workitems are inserted into the

data structure at the destination. Therefore, contention on the data structure is less in post-

order compared to pre-order. Therefore, pre-order execution shows better performance

than post-order configuration.

11.5. Temporal Ordering

The strict weak ordering relation partitions work into “ordered equivalence classes”.

The strict weak ordering relation is specified to the framework as a C++ functor. List-

ing 11.4 shows an example of how Dijkstra’s algorithm ordering is specified. The index

parameter specifies the tuple location for the distance in a workitem. If two workitems have

the same distance, then the workitems are not comparable. Hence, they belong to the same

equivalence class. However, if their distances are different, they belong to different equiv-

alence classes.

LISTING 11.4. Dijkstra’s ordering for SSSP
1 template<int index>
2 struct dijkstra {
3 public:
4 template <typename T>
5 bool operator()(T i, T j) {
6 return (std::get<index>(i) < std::get<index>(j));
7 }
8 };
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FIGURE 11.8. Data structure that holds workitems. Each node has a repre-
sentative workitem and an append buffer.

Within a Rank, these partitions are maintained inside a concurrent data structure. The

data structure supports functionalities similar to an abstract dictionary data structure. Every

node in the dictionary data structure has a representative workitem and an append buffer

(Figure 11.8). A workitem is inserted into an append buffer of a node only if the represen-

tative workitem is not comparable to the inserting workitems. The node with the smallest

representative workitem stays in the front of the data structure.

11.5.0.1. Inserts to Data Structure. When the framework pushes a workitem to the data

structure, it first finds the smallest node that has a representative workitem which is not less

than the workitem being inserted (See push function in Algorithm 22, Line 2). If there is such

node, its representative workitem is compared to the workitem being inserted. If the found

node’s representative workitem is not comparable to the workitem being pushed, workitem

is inserted into the append buffer attached to the node (Line 5). If the found node’s rep-

resentative workitem is greater than the workitem being inserted, a new node is inserted

before the found node. A pushed workitem is also added as the representative workitem and

inserted into the append buffer associated with the newly created node (Line 10). Since

non-comparable operation is transitive in a strict weak ordering relation, we can store the

first workitem being inserted into the append buffer as the representative workitem and com-

pare other incoming workitems to that workitem.

Multiple shared-memory parallel threads may insert workitems into the data structure.

The framework needs to guarantee that the data is consistent when operating with multi-

ple threads. While there are a number of ways to handle this, Algorithm 22 shows how we

can use read-write locks to make sure that there are no race conditions. Multiple threads
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can read and insert workitems into existing append buffers (Line 1), but modifying the data

structure while inserting a new node is exclusive (Line 9).

The append buffer associated with each node is also a concurrent data structure. Mul-

tiple shared-memory parallel threads may insert workitems to the end of the append buffer.

In the implementation, we use an atomic-based append buffer to store workitems per equiv-

alence class.
Algorithm 22 The push function
Push workitem wi, strict-weak-ordering <o:

1: read-lock()
2: lb← lower-bound(buckets, wi)
3: if lb ! = buckets.end() then
4: rep← lb→ representative
5: if ((rep≮o wi) && (wi≮o rep)) then
6: buffer← lb→ appendbuffer
7: buffer.insert(wi)
8: else
9: write-lock()

10: n← new Node
11: n→ representative←wi
12: n→ buffer.insert(wi)
13: buckets.insert(lb, n)
14: end if
15: end if

11.5.0.2. Processing. The data structure, discussed above is maintained in every Rank.

Every rank starts processing the workitems in the first node’s append buffer in the data

structure. However, the first node in every Rank may not represent the same equiva-

lence class. Therefore, before start processing the first node’s append buffer, every node

exchanges representative workitems. If representative workitems are comparable in two

nodes, the node that has a higher equivalence class pushes an empty node to represent

the smallest equivalence class. This operation requires a global reduction of representa-

tive workitems. When every rank’s first node’s representative workitem belongs to the same

equivalence class every rank starts processing the workitems in append buffers associated

to the first node of every rank.
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FIGURE 11.9. The workitem generation combinations.

Ordering⇡su ⇡gen
active++

active++
active++

processed++

bucket
active++

bucket
active—

FIGURE 11.10. The life cycle of a workitem and how termination counts are
modified.

Processing an equivalence class may generate work to an equivalence classes greater

than the current equivalence class (Figure 11.9a), or it can generate work to greater equiv-

alence classes and to itself (Figure 11.9b), or to any equivalence class (Figure 11.9c). The

framework implements the most general scenario out of the combinations shown in Fig-

ure 11.9, i.e., generating workitems to any equivalence class, including the currently pro-

cessing equivalence class.
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To decide whether the framework has finished processing the current equivalence

class, we use the four counter termination detection algorithm described in [95]. Every Rank

maintains two counters locally: 1. active count, 2. processed count. The life cycle of a workitem

starts at the πgen function and it terminates when a workitem finishes its work after execut-

ing the πgen function (Figure 11.10). The active count is incremented when a workitem is

generated at the πgen function whereas a passive count is incremented when it is pushed

into the data structure. Before pushing a workitem to the data structure, the framework

increases another atomic counter, bucket-active. The bucket-active count is decremented

after the framework invokes πgen function. The bucket-active count represents the number

of workitems pushed to the current equivalence class. When the global active count sum-

mation is equal to the global processed count summation for two consecutive iterations,

the four counter algorithm decides that all the messages are exchanged relevant to the cur-

rent iteration of the equivalence class. Then, if the bucket-active count is also zero, the

framework decides that it has finished processing the current equivalence class.

If a workitem is not destined to the current equivalence class, then it will not increment

the bucket-active count right away. To handle this case, each node in the data structure

maintains a counter: pending active counter. When a Rank receives a workitem that is com-

parable to the representative workitem of the currently processing equivalence class, it first

increments the “pending active counter”, and then, increments the processed count and

inserts the workitem to the appropriate node in the data structure. Then, at the start of pro-

cessing an equivalence class, the active count is increased by the “pending active count”

for the node.

A code region that modifies active, passive counts and performs message send/receive

is called an epoch. If a particular ordering is always generating work to an equivalence

class, the number of epochs required is the same as the total number of equivalence classes

generated by the algorithm. However, if processing current equivalence class generates

work for the same equivalence class, then we need an additional epoch to decide that the

current equivalence class has finished processing.
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FIGURE 11.11. Processing of a single class.
A more precise logic for processing equivalence classes is listed in Algorithm 22. The

framework selects the top node from the data structure (Line 5). If the data structure

is empty, an un-initialize workitem is created (See Line 8, An un-initialized workitem is a

workitem that has its all tuple values initialized to maximum possible value). The frame-

work then finds the smallest workitem in the system using the strict weak ordering relation

(Line 10). If the reduced workitem is also un-initialized, then data structures in all ranks are

empty. Hence we can terminate the processing (See Line 11 and Line 20). If the reduced

workitem is less than the representative workitem in the top node, a node with an empty

buffer is inserted into the data structure (Line 14). Then, the framework selects the top

node and initializes the bucket-active count to the pendingactive count for the node. After

updating the active count, every rank starts processing the top equivalence class (Line 23).

When processing an equivalence class, workitems may get generated into the same

equivalence class. Therefore, the framework performs an all reduce to calculate the to-

tal number of workitems in the current equivalence class (Line 2). If the calculated amount

is not zero, the framework invokes ProcessClass with the equivalence class.

After all participating nodes decide that current equivalence class has finished process-

ing, it will be removed from the data structure (Line 26). Then, the first node in the data

structure is chosen for next execution (Line 5). This way the execution proceeds until there

are no more equivalence classes in the data structure. When there are no more classes to

process algorithm terminates.

11.5.0.3. Processing a Single Equivalence Class. Processing of a single equivalence class is

shown in Figure 11.11. When processing an equivalence class, workitems can get generated
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Algorithm 23 The Process function, in a single Rank
Process threadid tid :

1: while true do
2: workitem wi
3: if tid is the main thread then
4: if !buckets.empty() then
5: top← buckets.first
6: wi← top.representative
7: else
8: wi← Un-initialized
9: end if

10: workitem wred ← AllReduce(wi, <o)
11: if wred==Un-initialized then
12: shouldbreak = true
13: else if wred <o wi then
14: PushEmptyNode(wred)
15: end if
16: top← buckets.first
17: active← top.pendingactive
18: end if
19: threadbarrier.wait()
20: if shouldbreak then
21: break
22: end if
23: process(top, tid)
24: if tid is the main thread then
25: top.clear()
26: buckets.pop()
27: end if
28: end while
PushEmptyNode wred :

1: n← new Node
2: n→ representative← wred
3: insert n to buckets

Process top, threadid tid :
1: while true do
2: allactive← AllReduce(active)
3: if allactive ! = 0 then
4: epoch
5: ProcessClass(top, tid);
6: else
7: break
8: end if
9: end while
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to the same equivalence class. The newly generated workitems are appended to the back

of the buffer for the current node. Therefore, while processing an equivalence class, the

length of the buffer can be changed and new workitems get added to the buffer.

Within a Rank, every parallel thread picks a workitem from the buffer and executes the

πgen function (See the loop in Line 7 of Algorithm 24). The start index of the buffer is kept as

a member variable and initialized to the beginning of the buffer (Line 1). The processing of

the append buffer may stretch into several iterations. Therefore, after finishing an iteration,

the start index for the next iteration is stored as the end of the previous iteration (Line 11).

New end index is calculated at the start of each iteration. The ProcessClass function is

invoked until all the workitems are processed for the equivalence class.
Algorithm 24 The processing of a single equivalence class in a single Rank
Initialize Node top :

1: start← top→ buffer.begin()
Process Node top, threadid tid :

1: buffer← top→ buffer
2: if tid is main thread then
3: end← buffer.end()
4: end if
5: threadbarrier.wait()
6: while start ! = end do
7: for i = start; i < end; i+= threads do
8: invoke πgen with buffer[i]
9: end for

10: if tid is main thread then
11: start← end
12: end if
13: threadbarrier.wait()
14: end while

11.6. Data Structure for Equivalence Class

As discussed above, the data structure that holds equivalence classes locally maintains

equivalence classes in a “Dictionary” data structure. It also globally synchronizes after

processing an equivalence class. We evaluated the performance of several data structures

that hold workitems locally. In sequential execution we can use a tree data structure to hold

equivalence classes (e.g., Standard Template Library(C++ ) (STL) map or set). However,
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the framework data structure needs to handle concurrent inserts to equivalence classes and

thus concurrent modification of equivalence classes. We experimentally evaluated several

possible data structures:

(1) Linked List

(2) Binary Search Trees

(3) Concurrent SkipList

(4) Partitioning Scheme

11.6.1. Linked List. Every compute Rank maintains a linked list. A node in the linked

list has a representative workitem and a pointer to an append buffer. The append buffer

holds the workitems for the equivalence class. Inserting a new workitem has the complexity

of O(n), where n is the maximum possible number of equivalence classes. An advantage

of the Linked List implementation is that we do not need to lock the whole data structure

when inserting workitems or when inserting new equivalence classes. When inserting a

new equivalence class, we only need to lock the node immediately before the one that is

being inserted. However, we need to be careful to handle race conditions that may occur

when there are workitems trying to create the same equivalence class at the same time.

11.6.2. Binary Search Trees. Binary Search Tree (BST) can search an equivalence class

with O(lg(n)), a time complexity. However, BST data structures re-balance the tree during

insertion and deletion to guarantee the search complexity. Therefore, we need to lock the

whole data structure to assure that data structure is not in an inconsistent state after data

structure operations.

11.6.3. Concurrent SkipList. SkipList [114] is an alternative probabilistic data struc-

ture that gives the same complexity guarantees as BSTs but avoids the need for re-balancing.

Since SkipList avoids the need for re-balancing, it is a good candidate for concurrent exe-

cution. A concurrent, lock-free SkipList algorithm is listed in [65]. An implementation of

this algorithm is also available in LibCDS (http://libcds.sourceforge.net/). We

use this implementation in our framework and evaluate its performance.
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11.6.4. Partitioning Scheme. In this method, every rank maintains two sets of vectors

to store workitems. They are storing vectors and processing vectors. Each set contains vectors

equal to the number of parallel threads. The first set holds the incoming workitems that do

not belong to the current equivalence class and the second set of vectors store the workitems

that belong to the currently processing equivalence class. The framework also maintains

a workitem to represent the currently processing equivalence class (W g
min). When a thread

receives a workitem, it is compared against the W g
min. If the workitem is not comparable to

W g
min, then it is directly processed, otherwise the workitem is pushed into the storing vector

that belongs to the processing thread. Assuming the vector insert does not cause a resize

of the vector, the insert operation can be done in O(1).

Further, every thread maintains a minimum (as per the strict weak ordering relation)

workitem inserted into the storing vector. After processing an equivalence class (i.e., when

processing vectors are empty), the framework calculates the global minimum workitem by

performing a global reduction. This minimum value is assigned to W g
min. Then, using

W g
min, storing vectors are partitioned and workitems that are not comparable to W g

min are

moved to at the end of each vector. The partitioned workitems are moved to the processing

vector of the relevant thread and the storing vectors are resized to the release memory (See

Figure 11.12 for details).

To avoid in-node load imbalance, workitems collected to a vector of one thread are pro-

cessed by all the threads (Figure 11.13). Once one vector is processed, all threads start pro-

cessing the next vector. In other words, all processing vectors are arranged in a horizontal

line and parallel threads process elements in the vectors (As depicted in Figure 11.13).

However, when consuming work in processing vectors, new work is not inserted into

them. Therefore, we do not need to use locking while executing workitems in processing

vectors.

In all other cases, equivalence classes are created at the time of inserting a workitem,

but in this scheme, workitems are partitioned after processing a previous equivalence class.

This approach reduces the contention when processing in multiple threads. However, this

approach consumes time when partitioning the next equivalence class. The partitioning
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FIGURE 11.13. Partition scheme functionality: avoiding in-node load imbalance.
Data Structure Execution Time (sec.)
Linked List ≈ 60
BST ≈ 82
Concurrent SkipList ≈ 89
Partitioning Scheme ≈ 50

TABLE 11.3. SSSP ∆-Stepping algorithm execution time with different data
structures. Experiment is ran on a Graph500 scale 25 on four ranks and 16
parallel threads per rank

process could take O(n) amount of comparisons with the strict weak ordering relation and

could take O(n) amount of swaps to move workitems to the end of the vector. Here n is the

length of a storing vector.

11.6.5. Performance. Table 11.3 shows execution time (pre-order execution configura-

tion) of ∆-Stepping AGM algorithm on a scale 25 Graph500 graph input on four ranks. As

can be seen in the table, the best performance is achieved with the partitioning scheme.
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We believe the poor performance in SkipList is due to the contention caused by concurrent

threads, BST shows poor performance since we have to lock the whole data structure to

avoid any inconsistencies that could occur from tree balancing. The Linked List data struc-

ture shows slightly better performance since we do not lock the whole data structure but

only the node that is being inserted. The partitioning scheme uses the minimum amount

of locks, hence the contention is minimized.

11.7. AGM Framework Usage

Listing 11.5 shows how the AGM framework can be invoked. The framework takes

definitions of a graph, workitem, processing function, and ordering as template arguments.

The RuntimeModelGen creates an instance of a runtime with the interface functions de-

fined in Chapter 10. When instantiating the AGM, we need to pass an instance of a Run-

timeModelGen, an instance of an ordering functor, a processing function instance, and an

initial workitem set.

LISTING 11.5. Invoking AGM for SSSP
1 // SSSP (AGM) algorithm
2 typedef agm<Graph,
3 WorkItem,
4 ProcessingFunction,
5 StrictWeakOrdering,
6 RuntimeModelGen> sssp_agm_t;

8 sssp_agm_t ssspalgo(rtmodelgen,
9 ordering,

10 pf,
11 initial);

Once executed, the AGM framework will populate initial workitems to the data struc-

ture and start processing the smallest equivalence class. As equivalence class process

works locally, it may get more work. When a Rank does not have more work for the

current equivalence class, it will attempt to perform termination for the current equiva-

lence class. If all the ranks have finished processing work for the current equivalence class,

then all ranks move to the next equivalence class. Figure 11.14 shows the processing of
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equivalence classes by the framework (∆-Stepping algorithm). The dashed red lines show

locally finished work but the rank gets more work for the same equivalence class. The

thick red line shows an end of processing an equivalence class by all ranks.
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FIGURE 11.14. AGM execution of ∆-Stepping algorithm.

11.8. Summary

This chapter describes the AGM framework implementation. Two main inputs to the

framework are the processing function and ordering. With these two inputs, the frame-

work executes the algorithm.

AGM is an abstract model and does not involve a description of a runtime. However,

when mapping AGM to the actual distributed hardware, we need to incorporate a runtime

that wraps functionalities related to threading, messaging etc.,. We identified that there

are three approaches to place the processing function in the framework: 1.pre-order, 2.

post-order, 3. split-order. This chapter also showed that out of these three choices, the

split-order approach demonstrates better performance as it is able to eliminate the most

amount of redundant work and reduce the contention on the data structure.

Further, we investigated several data structures to hold equivalence classes within a

rank and showed that the partitioning scheme shows best performance since it is able to

avoid much of the contention.
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12

EAGM Graph Processing Framework

Expressing an algorithm using a processing function and an ordering is abstract and in-

dependent of the implementation. However, distributed-memory graph algorithms are

strongly impacted by the properties of the distributed architecture that they run on. To

capture this impact, we map ordering of workitems to different spatial distributions on a

distributed-memory platform.

Currently, we recognize 4 hierarchical levels of distribution that roughly match modern

distributed systems (arrows indicate inclusion):

Global −→ Process −→ Numa −→ Thread

These spatial memory levels are depicted in Figure 12.1. As per the figure, every Rank

has its own memory (red boxes) and collectively all the memory in all ranks forms the

global memory (green box). Further, every Rank has two NUMA domains and in each

one, there are three parallel threads relevant to the three cores in the NUMA domain.

T0 T1 T2 T3 T4 T5

N0

Global
Spatial Level

Node
Spatial Level

NUMA
Spatial Level

Thread
Spatial Level

numa0 numa1

T0 T1 T2 T3 T4 T5

N1
numa0 numa1

T0 T1 T2 T3 T4 T5

N2
numa0 numa1

FIGURE 12.1. Spatial memory hierarchy.
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FIGURE 12.2. Global ordering ∆-Stepping SSSP algorithm execution.
Spatial orderings apply non-semantic ordering on workitems throughout the spatial hi-

erarchy of a distributed machine. The ordering at the Global level creates global equiv-

alence classes. The global equivalence classes can be further ordered at the lower levels

of the hierarchy. For example, two different spatial orderings for ∆-Stepping (with ∆ = 5)

are <∆(5)→<ch→<ch→<ch and <∆(5)→<ch→<ch→<dj where each ordering corresponds

to the appropriate spatial level (the orderings are as defined in the previous section). The

first spatial ordering enforces <∆(5)at the global level, but leaves execution in buckets un-

ordered (<ch). Execution of this algorithm is depicted in Figure 12.2. The second spatial

ordering applies Dijkstra’s ordering at the Thread level (<dj). This means that workitems at

every thread are ordered in a priority queue as they reach the thread in the spatial distri-

bution.

Ordering applied to the Process level creates equivalence classes locally at the process.

After processing an equivalence class, all threads underneath the node are synchronized.

For example, the spatial ordering <∆(5)→<ch→<ch→<ch only creates equivalence classes

188



www.manaraa.com

T0 T1 T2 T3 T4 T5

N0
numa0 numa1

T0 T1 T2 T3 T4 T5

N1
numa0 numa1

T0 T1 T2 T3 T4 T5

N2
numa0 numa1

FIGURE 12.3. Globally asynchronous, but process level synchronous.
at the process level. Each Rank has its own equivalence classes and synchronization takes

place within the Rank only. There are no global equivalence classes like in ordering, <∆(5)

→<ch→<ch→<ch. See Figure 12.3.

Similarly, when ordering is applied to NUMA level, equivalence classes are created

and threads underneath a particular NUMA domain are synchronized. We assume that

within a node parallelism is constrained to the number of cores available in the node and

each parallel thread is pinged to a core. A parallel thread belongs to a NUMA region if it

is pinged to a core in that particular NUMA region.

Figure 12.4 summarises the spatial and temporal execution of a graph algorithm. The

primitive workforce of a parallel algorithm is a parallel thread. Every parallel thread exe-

cutes the processing function for the algorithm. The boxes enclosed in green shows equiva-

lence classes generated for global spatial level. After processing a global equivalence class,

189



www.manaraa.com

T0 T1 T2 T3 T4 T5

N0
numa0 numa1

T0 T1 T2 T3 T4 T5

N1
numa0 numa1

T0 T1 T2 T3 T4 T5

N2
numa0 numa1

Ti
me

Global
Equivalence

Class

Global
Barrier

Node
Equivalence

Class
NUMA

Equivalence
Class

Thread
Equivalence

Class
NUMA

Barrier
Thread
Barrier

Spatial Ordering

Temporal Ordering

FIGURE 12.4. Spatial & Temporal ordering execution.
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a global barrier is executed. The same logic is applied to lower spatial levels in the mem-

ory hierarchy. Within a global equivalence class, there can be several equivalence classes

generated from node level ordering. After processing a node level equivalence class, all

the parallel threads belonging to that node are synchronized. Similar logic is applied to

NUMA level equivalence classes.

The ordering controls the amount of work generated. However, too much ordering

comes with synchronization overhead. In this model, we control the amount of work gen-

erated as well as the overhead of synchronization by defining strict weak ordering rela-

tions at each spatial level. For example, if we specify chaotic ordering at the global level

and specify <∆(5) at the node level, we get a single large equivalence class at the global

level and ∆ ordering at node level. Hence, the algorithm is globally asynchronous by or-

ders working in ∆ buckets at the node level.

12.1. Spatial Ordering Implementation

The framework is further extended to explore orderings of spatial memory distribution

on a distributed memory platform. Each level of a spatial memory hierarchy is annotated

with an ordering. For example, consider the following memory hierarchy:

Global −→ Process −→ Numa −→ Thread

. For this memory hierarchy, two example ordering configurations are <∆(5)→<ch→<ch→
<ch and <ch→<∆(5)→<ch→<ch. The first configuration creates global equivalence classes

and separates workitems into global equivalence classes based on their distances. The sec-

ond configuration creates similar equivalence classes but at the node level. The global ex-

ecution is asynchronous for the second configuration. Synchronization is only performed

at the node level.

Figure 12.5 depicts how framework executes second ordering. The framework creates

a single large equivalence class for the chaotic ordering. At the node level, after processing

each equivalence class, there is a thread barrier executed in each node. It is important to

note that this barrier is local to a node. The algorithm performs global synchronization
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FIGURE 12.5. Execution of ordering <ch→<∆(5)→<ch→<ch.
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FIGURE 12.6. Execution of ordering <ch→<∆(5)→<level→<dj.
only once. We say this algorithm is globally asynchronous, node level synchronous, numa

level asynchronous, and thread level asynchronous. In other words, whenever there is a

chaotic ordering defined for a memory level, the execution is asynchronous.
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FIGURE 12.7. The data structure that stores spatial and temporal workitems.
The execution of another ordering configuration is depicted in Figure 12.6. This order-

ing configuration executes workitems globally asynchronously. However, at the node level

and numa level algorithm is synchronous. In the implementation, every thread is pinged

to a core and threads are classified based on the numa region they are operating on. As

can be seen in Figure 12.6, horizontally we order workitems temporally and vertically we

order workitems spatially. Hence, the framework is able to perform spatial and temporal

orderings on workitems.

The primitive execution unit in the framework is a thread. When a thread receives a

workitem, it is pushed into a data structure. However, the data structure is more compli-

cated than the data structure we used in Section 12.1. The data structure has nested levels

for each spatial domain. There is a set of equivalence classes for each memory level in the

hierarchy. An equivalence class for a memory level includes a set of equivalence classes

that correspond to the child memory level in the hierarchy. The structure of the nested

data structure is shown in Figure 12.7. All the workitems are stored at the thread level.

Processing an equivalence corresponding to an upper memory level requires processing

all equivalence classes corresponding to lower levels in the memory hierarchy. For exam-

ple, when processing an equivalence class at numa level, the framework processes all the
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equivalence classes in thread level under that numa domain. As per Figure 12.6, process-

ing an equivalence class in n0, NUMA0 requires processing all the equivalence classes in

threads T0, T1, T2. After processing an equivalence class in an intermediate memory level,

the framework synchronizes the processing threads that belong to the intermediate mem-

ory level. For example, after processing an equivalence class in numa domain, all threads

that are pinged to the cores in that numa domain are synchronized. As per Figure 12.6,

threads T0, T1 and T3 are synchronized after processing an equivalence class in numa0.

Then, the framework removes the currently processing equivalence class from the data

structure and moves to the next equivalence class. When global ordering is defined, the

synchronization takes place at the global level. After processing a global equivalence class,

all processing threads (in-node and distributed) are synchronized.

The data structure depicted in Figure 12.7 is built at compile time using C++ template

meta-programming. The framework uses ordering traits structure (Listing 12.1) to create

a spatial data structure at compile time. The ordering traits structure takes ordering

defined for each memory level as a type parameter. In addition, it also takes an order-

ing config structure and an implementation of the runtime. The framework does not rely

on a particular runtime, rather the runtime is abstract out in the implementation. Any run-

time implementation can adopt the framework by implementing functions in the abstract

runtime. The structure is statically constructed to store equivalence classes in each level.

LISTING 12.1. Code for static construction of the data structure to hold spa-

tial equivalence classes
1 template<typename GlobalOrdering,
2 typename NodeOrdering,
3 typename NumaOrdering,
4 typename ThreadOrdering,
5 typename EAGMConfig,
6 typename Runtime>
7 struct ordering_traits {
8 <global equivalence classes structure>
9 <node equivalence classes structure>

10 <numa equivalence classes structure>
11 <thread equivalence classes structure>
12 };
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12.1.1. EAGM Schedulers. The AGM(Chapter 11) framework, always selects the next

smallest (as per the strict weak ordering relation) equivalence class after processing an

equivalence class. However, in EAGM, an equivalence class at a lower spatial level (e.g.,

Process, Numa or Thread) can get workitems to previously processed equivalence classes.

This is because there is no guarantee that all ranks have finished processing the equiva-

lence class at the same time. While there are multiple ways to handle this, the framework

provides two approaches to execute EAGM equivalence classes:

(1) While the algorithm is not terminated, process current equivalence class. Then,

when current equivalence class is empty, move to the next equivalence class. Re-

peat this process until the algorithm reaches the end of the equivalence class data

structure. If the algorithm is not yet terminated, move to the beginning of the data

structure that holds equivalence classes.

(2) While the algorithm is not terminated, process current equivalence class. When

the current equivalence class is empty and if the algorithm is not terminated, se-

lect the smallest non-empty equivalence class from the data structure that holds

equivalence classes and process it.

As per our initial results, the second approach in processing equivalence classes showed

better performance than the first approach since the second approach was able to reduce

Invalidated Work work compared to the first approach.
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12.2. EAGM Framework Usage

LISTING 12.2. AGM
1 // SSSP (AGM) algorithm
2 typedef agm<Graph,
3 WorkItem,
4 ProcessingFunction,
5 StrictWeakOrdering,
6 RuntimeModelGen>

sssp_agm_t;

8 sssp_agm_t
ssspalgo(rtmodelgen,

9 ordering,
10 pf,
11 initial);

LISTING 12.3. EAGM
1 // SSSP (EAGM) algorithm
2 typedef eagm<Graph,
3 WorkItem,
4 ProcessingFunction,
5 EAGMConfig,
6 RuntimeModelGen>

sssp_agm_t;

8 sssp_agm_t
ssspalgo(rtmodelgen,

9 config,
10 pf,
11 initial);

The AGM framework takes a processing function and a strict weak ordering as input

and executes the algorithm. The EAGM framework takes a list of orderings that are an-

notated to each spatial level and a processing function and executes the algorithm (See

Listing 12.2 and Listing 12.3). The orderings relevant to each spatial levels are specified

using an EAGMConfig.

An example of how an EAGMConfig is created is given in Listing 12.4. The CHAOTIC ORDERING T

, DELTA ORDERING T, and DIJKSTRA ORDERING T are ordering functors defined simi-

larly to the functor in Listing 11.4. The EAGM invoked with the configuration in this

example Listing 12.4, creates the execution ordering <ch→<∆(5)→<ch→<dj.

LISTING 12.4. EAGMConfig instantiation.
1 CHAOTIC_ORDERING_T ch;
2 DELTA_ORDERING_T delta(agm_params.delta);
3 DIJKSTRA_ORDERING_T dj;
4 auto config = boost::graph::agm::create_eagm_config(ch,
5 delta,
6 ch,
7 dj);
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FIGURE 12.8. An example of optimizing spatial orderings.
12.3. Optimizations

The framework treats CHAOTIC ORDERING as a special ordering. In CHAOTIC ORDERING

any given two workitems are not comparable to each other. Therefore, CHAOTIC ORDERING

ordering creates a single large equivalence class. When there is a CHAOTIC ORDERING, or-

dering defined for a spatial level, we do not need to order workitems at that spatial level.

Therefore, when a spatial level is defined with a CHAOTIC ORDERING, ordering we can

skip those ordering levels in the data structure shown in Figure 12.7.

The ordering configuration <ch→<ch→<ch→<ch represents a complete asynchronous

algorithm and does not perform any ordering at any spatial level. Therefore, workitems

reaching a Rank in this configuration are not pushed into the EAGM data structure. In-

stead they are immediately processed with the processing function. The new work gen-

erated is also not pushed into the EAGM data structure. Instead it is directly sent to the

destination rank.

Figure 12.8 shows how the framework optimizes the data structure relevant to ordering

configuration, <ch→<kla(2)→<ch→<dj. In the optimized version, the framework does not

create equivalence class data structures for memory levels that have CHAOTIC ORDERING.

When a workitem is pushed into the data structure, it finds the appropriate equivalence

class based on <kla(2). Within that equivalence class it is then inserted to the equivalence

class in thread level (defined by <dj).
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FIGURE 12.9. An example of optimizing spatial orderings.
Another example of ordering optimization is shown in Figure 12.9. In this case, there is

a global ordering defined. However, all other orderings are CHAOTIC ORDERING. There-

fore, the framework statically generates a data structure that handles equivalence classes

at the global level and skips all other levels. The generated data structure is local to a node

and thus workitems may be pushed into the data structure by multiple threads. Therefore,

to store workitems pushed by multiple threads we use a concurrent append data structure.

This ordering configuration is equivalent to an ordering definition without spatial levels

(Section 11.5).

If an ordering configuration specifies CHAOTIC ORDERING for all memory levels, the

framework avoids creating the data structure. The workitems are not pushed into a data

structure, instead, they are sent over the network to the recipient. If all orderings are

CHAOTIC ORDERING, that represents a pure asynchronous algorithm.

In addition to CHAOTIC ORDERING related optimizations, we also convert buffers to

priority queues when there is an ordering defined at the thread-level (Figure 12.10). At the

thread level, we do not need to maintain a concurrent data structure as the workitems in the

data structure are not shared by multiple threads. Therefore, sequential priority queues

are more suitable for thread level orderings.

All these optimizations are applied statically at compile time using template special-

ization. For example, when an ordering configuration similar to Figure 12.8 is specified,

the template specialization in Listing 12.5 is invoked at compile time. The structure in
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chaotic ordering

After converting
to priority queues.

<ch!<ch!<ch!<kla(2)

FIGURE 12.10. An example of optimizing spatial orderings.
Listing 12.5 only constructs the structure to hold node level equivalence classes, unlike the

general definition of ordering traits in Listing 12.1.

LISTING 12.5. Template specialization for ordering configurations that de-

fine node level ordering.
1 template<typename GlobalOrdering,
2 typename NodeOrdering,
3 typename NumaOrdering,
4 typename ThreadOrdering,
5 typename EAGMConfig,
6 typename Runtime>
7 struct ordering_traits<CHAOTIC_ORDERING,
8 NodeOrdering,
9 CHAOTIC_ORDERING,

10 CHAOTIC_ORDERING> {
11 // only constructing data structure
12 // to hold node equivalence classes
13 <node equivalence classes structure>
14 };

12.4. More Usecases

In the following, we present a few more examples of ordering configurations and how

their execution is taking place.

Figure 12.11 shows an execution of an asynchronous algorithm. There is a single large

equivalence class created and barriers are executed before and after processing.

If an algorithm only specifies the global ordering (e.g., <∆(5)→<ch→<ch→<ch), then

its execution is equivalent to AGM algorithm execution (Figure 11.14).
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FIGURE 12.11. Complete asynchronous algorithm.
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FIGURE 12.12. Globally asynchronous, but process and numa ordered execution.
Figure 12.12 shows an algorithm that is globally asynchronous, process level ∆ ordered

and NUMA level ordered.

As shown above, different algorithms can be generated by assigning different order-

ings to different spatial levels within a memory hierarchy.
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12.5. Summary

In this chapter, we discussed how AGM framework is extended to explore spatial or-

derings. The resulting framework (EAGM framework) enables us to specify orderings at

different spatial levels. The heart of the EAGM framework is the nested data structure that

manages workitems in each spatial levels.

The chaotic ordering is treated with a special significance and is used to optimize or-

dering specified in the EAGM config. With EAGM, we achieve two-dimensional ordering.

Horizontally, we achieve ordering by separating workitems into equivalence classes and

vertically, we achieve asynchronous execution at different spatial levels.
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13

Breadth First Search

Breadth First Search (BFS) is a straightforward graph application that was discussed in this

thesis several times (e.g., Section 2.2.1). In this chapter, we present pre-order, post-order

and split-order processing functions for BFS and performance results for several Extended

Abstract Graph Machine (EAGM) algorithms.

13.1. Pre-order BFS

BFS checks the reach-ability from a given source vertex to other vertices. The process-

ing function for BFS is given in Listing 13.1 as a C++ functor. For BFS a workitem is defined

as a tuple of an edge and the level value (Line 1). An edge is represented as a source ver-

tex and a destination vertex. The state levelst maintains the lowest level a vertex can be

reached from the source vertex and parentst maintains the parent vertex of a vertex in the

BFS tree. The π compares the level in the workitem with the level stored in levelst and if

the incoming workitem’s level smaller the state is updated. The update is performed using

Compare And Swap (CAS) (Line 8) operation since there can be multiple shared-memory

threads trying to update the same value. The CAS operation returns true upon successful

update of the level state. If current processing thread is able to update the distance, it will

generate new work to neighboring vertices (Line 13). These newly generated workitems are

pushed into the data structure for ordering.

LISTING 13.1. Processing function for BFS
1 typedef std::tuple<Vertex, Vertex, Level> WorkItem;
2 struct bfs_pf {
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3 void operator()(const WorkItem& wi, int tid, buckets& outset) {
4 Vertex v = std::get<0>(wi);
5 Vertex pv = std::get<1>(wi);
6 int level = std::get<2>(wi);

8 if(CAS(level, levelst[v])) {
9 parentst[v] = pv;

10 for_each(Edge e: out_edges(v)) {
11 Vertex u = target(e);
12 WorkItem generated(u, v, (level+1));
13 outset.push(generated, tid);
14 }
15 }
16 };

The BFS algorithm uses two states (parentst and levelst). These two states are initialized

as follows: parentst[v]← v∀v ∈ V and levelst[v]← ∞∀v ∈ V −{s} and levelst[s]← 0. The

vertex s is the source. Initial workitems are generated for neighbors of source vertex and

populated into the data structure for ordering (Algorithm 25).

Algorithm 25 The initial workitem generation for pre-order BFS.
Initialize Vertex s :

1: for Edge e: out edges(s) do
2: Vertex u = target(e);
3: WorkItem generated(u, s, 1);
4: outset.push(generated);
5: end for

13.2. Post-order BFS

The post-order processing functions are similar to pre-order processing functions, but

instead of inserting workitems to the data structure they are sent over the network to a

remote rank. For example, the outset.push call in Listing 13.1 (Line 13) is replaced with

Send(generated). The Send function is responsible for sending workitem to the appropriate

destination rank based on the data distribution.

13.3. Split-order BFS

The state update functor for BFS is given in Listing 13.2. The logic remains same as

Listing 13.1 except that Listing 13.2 only do the state update. New work is generated in
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Listing 13.3. Note that πsu is inserting workitem to the data structure (Line 10) whereas πgen

is sending newly generated workitems to remote ranks (Line 10).

LISTING 13.2. State update function for BFS
1 typedef std::tuple<Vertex, Vertex, Level> WorkItem;
2 struct state_update_bfs_pf {
3 void operator()(const WorkItem& wi, int tid, buckets& outset) {
4 Vertex v = std::get<0>(wi);
5 Vertex pv = std::get<1>(wi);
6 Level l = std::get<2>(wi);
7 if(CAS(l, levelst[v])) {
8 if (l == levelst[v]) {
9 parentst[v] = pv;

10 outset.push(wi, tid);
11 }
12 }
13 }
14 };

LISTING 13.3. Work generating function for BFS
1 struct new_work_gen_bfs_pf {
2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex v = std::get<0>(wi);
4 Vertex pv = std::get<1>(wi);
5 Level l = std::get<2>(wi);
6 if(l == levelst[v]) {
7 for_each(Edge e : out_edges(v)) {
8 Vertex u = target(e);
9 WorkItem w(u, v, (l+1));

10 Send(w, tid);
11 }
12 }
13 }
14 };

13.4. Orderings

We evaluate the performance of BFS for the following orderings:

(1) <level→<ch→<ch→<ch

(2) <kla(2)→<ch→<ch→<ch

(3) <ch→<ch→<ch→<level

204



www.manaraa.com

The first two ordering configurations applied at the global level where the third con-

figuration is globally asynchronous and ordering is performed at the thread level. The

functor definitions for <level and <kla(2) are given in Listing 13.4 and in Listing 13.5. The

index template parameter specifies how to query the level attribute from a workitem (recall

that a workitem is defined as a tuple and “index” specifies the location of the level attribute

inside the tuple).

The <level puts two workitems to the same equivalence class if they have the same level

and <kla(2) inserts two workitems to the same equivalence class if their levels within [nk,(n+

1)k) range, where n ∈ {0,1, . . .}.

LISTING 13.4. The definition of <level

1 template<int index>
2 struct level {
3 public:
4 template <typename T>
5 bool operator()(T i, T j) {
6 return (std::get<index>(i) < std::get<index>(j));
7 }
8 };

LISTING 13.5. The definition of <kla(2)

1 template<int index>
2 struct klevel {
3 private:
4 int k;

6 public:
7 klevel(int _k):k(_k){}

9 template <typename T>
10 bool operator()(T i, T j) {
11 return ((std::get<index>(i)/k) < (std::get<index>(j)/k));
12 }
13 };

13.5. Experimental Evaluations
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FIGURE 13.1. A comparison of pre-order, post-order and split-order execu-
tion configurations for BFS.

13.5.1. Processing Function Execution. In this section, we experimentally evaluate

the performance of different processing function execution configurations for <level→<ch

→<ch→<ch. These experiments were carried out on a Cray XC system that has 2 Broad-

well 22-core Intel Xeon processors. Our experiments only used up to 16 cores to uniformly

to double the problem size and to double the number of processors in weak scaling. Each

node consists of 128 GB DDR4-2400 memory. We use an MPI+PThread, distributed shared-

memory runtime. The MPI implementation is Cray MPICH (version 7.4.4). The input is

Graph500 [104] graphs from scale 21–32.

The results are shown in Figure 13.1. As per results the pre-order and post-order con-

figurations show poor performance in shared memory execution (when cores < 32, exe-

cution is shared memory and shaded region shows the shared-memory execution). This

is mainly due to high contention created by pre-order and post-order execution configu-

rations. When execution is distributed, the post-order shows slightly better performance

than pre-order, but when the execution scales to many nodes we see that pre-order and

post-order performance degrading compared to split-order.
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13.5.2. Weak Scaling. For weak scaling experiments, we use R-MAT [23] synthetic

graphs. Weak scaling of above discussed algorithms are evaluated on three types of syn-

thetic graphs. They are:

(1) RMAT-1: Graphs based on the current Graph500 [104] Breadth First Search bench-

mark specification with R-MAT parameters A = 0.57, B =C = 0.19 and D = 0.05,

(2) RMAT-2: Graphs generated based on the proposed Graph500 [56] SSSP bench-

mark specification with R-MAT parameters A = 0.50, B =C = 0.1 and D = 0.3.

(3) ER: This is the Erdos-Renyi [42] random graphs.

Our initial experiments showed that the ordering <ch→<ch→<ch→<level is remark-

ably slow compared to other orderings. This is mainly because of the self-sending (Sec-

tion 10.1.2.2) of workitems. Recall that when self-sending is enabled, workitems destined for

current Rank are not routed through the network instead a function call is made to the

processing function. In Single-Source Shortest Paths (SSSP), with split-order configura-

tion, a workitem is pushed into the data structure and that workitem is picked up by a thread

and executes the πgen function. When self-sending is enabled, the new work generated by

πgen function is inserted into the same thread’s priority queue. Therefore, work is always

pushed into a single thread priority queue irrespective of the number of parallel threads

being executed.

There are two ways to overcome above-discussed performance issue: 1. disable self-

sending and route all the messages through the network, 2. run one process per core so

that, for some portion of the work, processing function is executed through the stack and

for the rest, messages are sent over the network.

By disabling self-sending we can utilize all the threads for processing workitems but

then we need to pay the cost of sending all messages through Message Passing Inter-

face (MPI) buffers and lower runtime layers. However, in distributed execution, the self-

sending avoid the overhead of sending a message through those MPI buffers and load

imbalance between in-node threads is also reduced due to distributed execution. There-

fore, in distributed execution, the self-sending improves the performance.

207



www.manaraa.com

Cores 1 process and multiple
threads per process

multiple processes and
1 thread per process

1 1.21 1.21
2 2.9 1.24
4 7.18 2.32
8 18.37 3.98
16 48.45 4.96

TABLE 13.1. Shared-memory results for BFS with two different process ex-
ecution configurations.

Our initial experiments showed that running a process per core (for shared-memory)

gives better performance compared to the first approach. For example, Table 13.1 shows

the shared-memory performance of <ch→<ch→<ch→<level ordering with 1 process per

core and 1 process for 16 threads. As explained above when we execute a process and 16

threads with self-sending, execution takes place in a single thread. When we use multiple

processes the in-node load imbalance is alleviated.

The weak scaling results for algorithms are given in Figure 13.2. In addition to EAGM

orderings discussed above, we also included results from Parallel Boost Graph Library,

version 2 (Parallel BGLv2) [38], BFS algorithm on Graph500 input (The first plot in Fig-

ure 13.2). The Parallel BGLv2 BFS algorithm uses a distributed queue and colors to fur-

ther avoid any redundant work. Therefore, Parallel BGLv2 BFS performs better than other

algorithms in shared-memory and EAGM algorithms show competitive performance in

distributed memory.

For all three graph inputs the level synchronous equivalent BFS (<level→<ch→<ch→
<ch) is faster than other orderings. For ER graphs the <ch→<ch→<ch→<level is much

slower than other two algorithms. ER graphs have a uniform degree distribution and a low

diameter (e.g., scale 30 graphs have about 8 levels), therefore the first and second orderings

are able to eliminate much of the redundant work and the synchronization overhead is also

minimized. However, the third ordering performs more invalidated work than first two

orderings, hence its performance is poor compared to other two orderings.

Certain orderings coincide with each other depending upon the spatial memory bound-

ary they are executing on. For example, <level→<ch→<ch→<ch and <ch→<level→<ch→
<ch has the same performance in shared-memory execution (Table 13.2). <level→<ch→<ch
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FIGURE 13.2. Weak scaling results for BFS orderings.

Cores <level→<ch→<ch→<ch <ch→<level→<ch→<ch
1 0.96 0.85
2 1.3 1.06
4 1.58 1.59
8 2.34 2.11
16 3.32 3.19

TABLE 13.2. Two different level orderings showing similar performance in-node.

→<ch has a global barrier after processing an equivalence class and <ch→<level→<ch→
<ch synchronizes all the thread under the process, after processing an equivalence class.

When algorithms are executed in a single node, the global barrier is equivalent to the

thread barrier. Because of that, both above configurations show similar performance.
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FIGURE 13.3. Strong scaling results for BFS orderings. Plots show the rel-
ative speed-up. The fastest sequential algorithm is shown on the plot with
the timing.

13.5.3. Strong Scaling. Strong scaling experiments were carried out on a Cray XC30

supercomputer. Each node in the system has two Intel Xeon processors and each pro-

cessor has 12 cpus (cores). Each node has 64 GB of DDR3 RAM. The system uses Aries

interconnect.

Speed-up results for scale 25, RMAT-1, RMAT-2 and ER graphs are shown in Fig-

ure 13.3. To gain a better understanding about how algorithms scale relative to each other,

we measured Relative Speedup,= Tre f 1
Tn

i.e., the ratio of the execution time of the fastest se-

quential algorithm, Tre f 1 and the parallel execution time on n processing elements, Tn.
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Nodes <level→<ch→<ch→<ch <ch→<ch→<ch→<level
1 1.7 2.67
2 2.47 1.17
4 3.88 0.83
8 6.06 0.88

16 8.82 0.72
32 12.01 0.52
64 15.45 0.42
128 21.19 0.38

TABLE 13.3. Timing results to process CA road [84] network graph on dis-
tributed nodes for two algorithms (Time in seconds).

In distributed execution, all synthetic graphs show similar speedups for all the algo-

rithms until about 768 cores. Afterward, the amount of parallelism reduces and speed-up

also decreases.

13.5.4. High Diameter Graphs. Table 13.3 shows timing results to process road net-

work graph in distributed nodes. As can be seen, the global asynchronous EAGM algo-

rithm runs faster than global level ordered algorithm. In fact, global level ordering per-

formance decreases with the increasing number of nodes.

Road networks have very high diameters compared to other graphs (e.g., CA road

network diameter is 830 and a selected random source in average visits at least 540 levels).

Therefore, a globally synchronous algorithm may perform at least 540 barriers. Because of

the overhead of barrier synchronization, the globally level ordered algorithm shows poor

performance in distributed execution.
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14

Single Source Shortest Paths

Single-Source Shortest Paths (SSSP) is a seemingly simple problem where the task is to

find the shortest path from a source vertex s to every other vertex in the graph. A num-

ber of sequential algorithms exist. The well-known Dijkstra’s algorithm [34] is the “work

optimal”, where vertices are ordered in a priority queue based on their distance from the

source s, and every edge is traversed only once. Work optimality, however, comes at a cost

of limited parallelism and extensive synchronization. Subsequent development focused

on relaxing the strict ordering of the Dijkstra algorithm is to make more work available

in parallel at the cost of some “wasted work” that has to be invalidated and repeated.

For example, the ∆-Stepping [100] algorithm groups vertices into ∆-sized buckets based on

their distances from the source s, giving an approximation of Dijkstra ordering. Vertices

in a bucket are processed in parallel. Picking an appropriate ∆ ensures the right balance

between parallelism and wasted work. The K-Level Asynchronous [64] algorithm is simi-

lar, but it uses topological distances instead of shortest path distances from the source s to

order work into buckets1.

In this chapter, we show how these different approaches are implemented with a pro-

cessing function and an ordering using the Abstract Graph Machine (AGM) framework.

14.1. Pre-order SSSP

The SSSP application finds the minimum distance to every vertex from a given source

vertex. The pre-order processing function for SSSP is given in Listing 14.1.

1K-Level Asynchronous with single-hop buckets is equivalent to the Bellman-Ford algorithm [14].
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An SSSP workitem is defined as a vertex and a distance. This definition of the workitem

can be used to order work according to distinct distance values (e.g., Dijkstra’s algorithm)

and ∆ range buckets. The SSSP algorithm uses vdistance state to maintain the minimum

distance to a vertex from the source vertex. The distance in the incoming workitem is com-

pared against the stored distance in the state. The distance in the state variable is updated

if the workitem contains a smaller distance (Line 8). New work is generated for neighbors if

the distance for a vertex is updated (Line 9). The variable weight is a property that contains

the weight of each edge.

LISTING 14.1. Processing function for SSSP
1 typedef std::tuple<Vertex, Distance> WorkItem;
2 struct sssp_pf {
3 void operator()(const WorkItem& wi, int tid, buckets& outset) {
4 Vertex v = std::get<0>(wi);
5 Distance d = std::get<1>(wi);
6 Distance old_dist = vdistance[v], last_old_dist;

8 if(CAS(d, vdistance[v])) {
9 for_each(Edge e : out_edges(v)) {

10 Vertex u = target(e);
11 WorkItem w(u, (d+weight(e)));
12 outset.push(w, tid);
13 }
14 };

The vdistance state is initialized similar to levelst in Breadth First Search (BFS) (Sec-

tion 13.1), i.e., vdistance[v]← ∞∀v ∈V −{s} and vdistance[v]← 0. The initial WorkItems are

calculated according to Algorithm 26.

Algorithm 26 The initial workitem generation for pre-order
SSSP.
Initialize Vertex s :

1: for Edge e: out edges(s) do
2: Vertex u = target(e);
3: WorkItem generated(u, weight(e));
4: outset.push(generated);
5: end for
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14.2. Post-order SSSP

In post-order, the initial state values and initial workitems are generated differently than

in pre-order. This is because SSSP vdistance(Listing 14.1) is initialized to ∞ for all vertices

(including the source vertex) and a workitem with source vertex and 0 distance is pushed

into the data structure. Since the processing function is executed on the same rank for

workitems in the data structure, source vertex states are updated and new work is generated

for neighbors in the first execution of the processing.

14.3. Split-order SSSP

Listing 14.2 shows the πsu functor for SSSP. It takes a workitem and updates the dis-

tance state. Since multiple threads may access the distance state, the state update is carried

out using an atomic Compare And Swap (CAS) operation wherein the thread that updates

the smallest distance will succeed. CAS returns true if distance state is updated and if dis-

tance state is changed. The workitem is then pushed into the data structure that performs

ordering.

LISTING 14.2. State update function for SSSP
1 struct state_update_sssp_pf {
2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex v = std::get<0>(wi);
4 Distance d = std::get<1>(wi);
5 if(CAS(d, distance_state[v])) {
6 outset.push(wi, tid);
7 }
8 }
9 };

Listing 14.3 shows the new work generation functor for SSSP. The functor compares

the distance associated with workitem and the distance stored in the distance state. If they

are equal workitems are generated for neighbors of v.

LISTING 14.3. New work generation for SSSP
1 struct new_work_gen_sssp_pf {
2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex v = std::get<0>(wi);
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4 Distance d = std::get<1>(wi);
5 if (d == distance_state[v]) {
6 for_each(Edge e : out_edges(v)) {
7 Vertex u = target(e);
8 WorkItem w(u, (d+weight(e)));
9 Send(w, tid);

10 }
11 }
12 }
13 };

14.4. Orderings

We evaluate the performance of BFS for the following orderings:

(1) <∆(5)→<ch→<ch→<ch

(2) <dj→<ch→<ch→<ch

(3) <kla(2)→<ch→<ch→<ch

(4) <kla(2)→<ch→<ch→<dj

(5) <ch→<ch→<ch→<dj

The first ordering separates work into ∆ range buckets and buckets that are globally

ordered. The second ordering is similar to Dijkstra’s algorithm but differs in that equal

distance workitems are inserted into the same bucket. The third and fourth orderings use a

different definition of a workitem. This new definition includes the level visited in addition

to vertex and distance. The third configuration globally orders work by level and the

fourth configuration globally orders work by level and by distance at the thread level. The

final configuration is globally asynchronous but orders work by the distance at the thread

level.

The ordering functor for <∆(5) is given in Listing 14.4. The definition for <dj and <kla(2)

was given in Listing 11.4 and Listing 13.5.

LISTING 14.4. Delta ordering functor.
1 template<int index>
2 struct delta {
3 private:
4 int delta;
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FIGURE 14.1. A comparison of pre-order, post-order and split-order execu-
tion configurations for SSSP.

5 public:
6 delta_ord(int _d) : delta(_d) {}

8 template <typename T>
9 bool operator()(T i, T j) {

10 return ((std::get<index>(i)/delta) <
(std::get<index>(j)/delta));

11 }
12 };

14.5. Experimental Evaluations

14.5.1. Processing Function Execution. We experimentally evaluated the performance

of different processing function execution configurations for <∆(5)→<ch→<ch→<ch. These

experiments were carried out in the same environment in which we carried out BFS pro-

cessing function experiments (Section 13.5.1). The input is Graph500 [104] graphs from

scale 19–30.

The split-order configuration performed ≈ 5 times faster than post-order configura-

tion (See Figure 14.1). Further, the post-order configuration was faster than pre-order and

the performance difference between pre-order and post-order was more visible at higher

scales.

The split-order configuration is faster because it eliminates the most amount of redun-

dant work. Since post-order distributes insertions to the data structure, the contention
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on the data structure is less compared to pre-order. Hence, pre-order is faster than post-

order. Why split-order is faster than pre-order and post-order is discussed in detail in

Section 11.4.

14.5.2. Weak Scaling. For weak scaling, we used the same graph inputs we discussed

in Section 13.5.2. We compared weak scaling results of different algorithms against three

popular graph algorithms: 1. PowerGraph-GraphLab [90], 2. Parallel Boost Graph Library

(Parallel BGL) [39] 3. Parallel Boost Graph Library, version 2 (Parallel BGLv2) [38].

The first set of weak scaling experiments were carried out on Cray XE6/XK7 nodes,

each with 2 AMD Opteron Abu Dhabi CPUs (for a total of 32 cores), and 64 GB of memory

per node (4 numa domains, 2 per CPU). The weak scaling results for this set of experi-

ments is shown in Figure 14.2. In distributed execution, the globally asynchronous SSSP

with thread ordering performed much faster than other algorithms. As the scale increased

Dijkstra’s algorithm performance degraded because of the synchronization overhead and

less parallelism available for the same distance value. This is because both Parallel BGL

and Parallel BGLv2 implement the ∆-Stepping algorithm, but Parallel BGL uses a dis-

tributed data structure. Also, the execution is completely distributed. Parallel BGLv2

uses active messages and a hybrid execution, similar to the Extended Abstract Graph Ma-

chine (EAGM) framework. EAGM framework ∆ ordering showed better scaling and better

performance in distributed execution.

Unlike BFS, SSSP is a metric based (i.e., distance) algorithm. Ordering based on dis-

tance can avoid more work in SSSP than ordering based on the level. Therefore, the order-

ing <kla(2)→<ch→<ch→<ch shows higher timing values than other orderings. The execu-

tion time for <kla(2)→<ch→<ch→<ch is improved in <kla(2)→<ch→<ch→<dj because of

the distance ordering at thread level.

Both PowerGraph and Parallel BGLv2 do not scale very well in distributed execution;

especially when processing RMAT-2 synthetic graphs. PowerGraph implements SSSP us-

ing Gather-Apply-Scatter (GAS) primitives and there is global synchronization between

217



www.manaraa.com

����

��

���

����

�� �� �� �� �� �� �� �� �� �� �� �� ���

�
��
�

�
��
�

�
�
�
�
��

�����

����

��

���

����

� � � � �� �� �� ��
�

��
�

��
�

��
��

��
��

��
��

�
��
�

�
��
�

�
�
�
�
��

�����

�����������������
���������������

�����������������
�����������������
���������������

�������������������
����

�������

FIGURE 14.2. Weak scaling results for SSSP orderings and a comparison
with other graph processing systems.

Gather and Apply phases. There is also global synchronization between Apply and Scat-

ter phases. Further, PowerGraph does not perform ordering based on distance. Therefore,

PowerGraph process more redundant work than other algorithms. PowerGraph also pro-

vides a version that does not synchronize between Apply and Scatter phases (“asynchro-

nous engine”). However, our initial results showed that its performance is poorer than

that of their synchronous engine (two synchronization phases as discussed above).

Weak scaling results for an architecture that has 2048 cores (this is the same system

we used for BFS weak scaling tests) is shown in Figure 14.3. The RMAT-1 and RMAT-2

results show the same trend we saw in Figure 14.2. The RMAT-1 plot also includes results
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Algorithm Inv. Inv. Cancel Redundant
<∆(5)→<ch→<ch→<ch 1082711221 1080504309 2206912
<ch→<ch→<ch→<dj 3796319738 3452704617 343615121

TABLE 14.1. Work statistic comparison for two orderings on ER graphs.

for PowerGraph. EAGM algorithms out-performed PowerGraph performance. In shared-

memory results, we see that <∆(5)→<ch→<ch→<ch gives the best performance for all

three graph inputs.

For ER graphs, the <∆(5)→<ch→<ch→<ch ordering performance is better than other

orderings and we see that <ch→<ch→<ch→<dj ordering runtime increased. For ER graphs,

the algorithm <∆(5)→<ch→<ch→<ch, processed fewer equivalence classes than for RMAT-

1 graphs. For example, for Scale 29 on 32 nodes <∆(5)→<ch→<ch→<ch processed ≈ 134

equivalence classes (the number of equivalence classes is also same the same as the num-

ber of global barriers executed). For ER graphs, the same algorithm processed ≈ 85 equiv-

alence classes. Therefore, the synchronization overhead when processing RMAT-1 graphs

with <∆(5)→<ch→<ch→<ch ordering is clearly higher compared to the synchronization

overhead when processing ER graphs with the same algorithm. In addition, globally syn-

chronized, distance-based ordering eliminates more redundant work than asynchronous

thread orderings when processing ER graphs. See Table 14.1. In this table, the redundant

work is equal to (Invalidated Work- Invalidated Cancel Work).

ER graphs have a uniform degree distribution. Therefore, the possibility a vertex reach-

ing shortest distance after a visit from its previous level is high compared to power-law

graphs such as RMAT-1 and RMAT-2. Hence, for ER graphs, both global ∆ ordering and

global Dijkstra ordering eliminate more Invalidated Work work and process a fewer number

of equivalence classes (i.e., fewer number of global barriers).

14.5.3. Strong Scaling. Strong scaling experiments were carried out on a Cray XC30

supercomputer. Each node in the system has two Intel Xeon processors and each pro-

cessor has 12 CPUs (cores). Each node has 64 GB of DDR3 RAM. The system uses Aries

interconnect.
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FIGURE 14.3. Weak scaling results for SSSP orderings for experiments ran
on a architecture with fewer nodes.

Figure 14.4 shows strong scaling performance of different EAGM orderings for SSSP

(relative speedup). At a smaller number of nodes, globally ∆ ordered and globally Dijkstra

ordered algorithms showed better speedup compared to other orderings. However, as we

increased the number of nodes, the speedup decreased due to synchronization overhead

of those orderings. Globally chaotic and thread Dijkstra orderings show better speedup in

distributed execution. Algorithms achieve maximum parallelism around 1536 cores and

afterward, all algorithms show a decrease in their speedups.
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FIGURE 14.4. Strong scaling results for SSSP orderings. Plots show the rel-
ative speed-up. The fastest sequential algorithm is shown on the plot with
the timing.
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15

Connected Components

In this chapter, we show how Connected Components (CC) can be implemented using the

Extended Abstract Graph Machine (EAGM) framework we also evaluate its performance

for different processing function execution configurations and its strong and weak scaling

performance for different graph inputs. The framework implements the CC algorithm dis-

cussed in Chapter 6 and evaluates the performance of three different spatial and temporal

orderings.

15.1. Pre-order Connected Components

The processing function for CC is presented in Listing 15.1. A unit of work for CC is

defined as a pair of vertices and a component id (Line 1). Initially, all vertices are assigned

their vertex ids as their component ids. For every vertex, its component id is recorded in

the vcomponent state which is updated when a workitem with a smaller component identifier

is received (Line 6). The functor generates new work for successor vertices of the vertex

in the incoming workitem (Line 10). However, if algorithm detects that the vertex in the

workitem has a neighbor that is smaller than itself, the algorithm stops propagating state

changes to its successors (since the smaller neighbor is going to dominate the component

value for all its connecting vertices). The haslowernbr flag (Line 16) is set to true if the

vertex has a neighbor with a vertex id lower than the incoming component id. If there isn’t

a lower neighbor, work is generated (Line 20).

LISTING 15.1. State update function for CC
1 typedef std::tuple<Vertex, Component> WorkItem;
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2 struct cc_pf {
3 void operator()(const WorkItem& wi, int tid, buckets& outset) {
4 Vertex v = std::get<0>(wi);
5 Component component = std::get<1>(wi);
6 if (CAS(&vcomponent[v], component)) {
7 if (component == vcomponent[v])
8 set<Vertex> adjacencies;
9 bool haslowernbr = false;

10 for_each(Edge e : out_edges(v)) {
11 Vertex u = target(e);
12 if (u > component) {
13 adjacencies.insert(u);
14 }else if(u < component) {
15 // v has a lower neighbor
16 haslowernbr = true;
17 break;
18 }
19 }
20 if (!haslowernbr) {
21 for_each(Vertex w : adjacencies) {
22 WorkItem generated(w, component);
23 outset.push(generated, tid);
24 }
25 }
26 }
27 }
28 };

Initially, vcomponent is initialized to its vertex id (i.e., vcomponent[v]← v). If a vertex

does not have neighbors that are less than itself, we call that vertex a source. The algorithm

calculates those source vertices and the initial WorkItems set is generated for successors of

those source vertices. The algorithm to generate initial workitems is listed in Algorithm 27.

Algorithm 27 iterates over vertices in parallel (Line 1) and checks whether a vertex is

a source. To check whether a vertex is a source, it checks whether there are neighbors less

than the vertex. The variable haslowernbr is set to true if the vertex has a lower neighbor

(Line 7). If haslowernbr is false at the end of the loop for iterating neighbors (Line 13), then

that vertex is a source and work is generated for its adjacencies (Line 14) and pushed into

the data structure.
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Algorithm 27 The initial workitem generation for pre-order CC.
Initialize :

1: for Vertex v: V in parallel do
2: haslowernbr← false
3: Set:adjacencies
4: for Edge e: out edges(v) do
5: Vertex u = target(e);
6: if u < v then
7: haslowernbr← true
8: break
9: else

10: adjacencies.insert(u)
11: end if
12: end for
13: if haslowernbr == false then
14: for Vertex w : adjacencies do
15: WorkItem generated(w, v);
16: outset.push(generated);
17: end for
18: end if
19: end for

15.2. Post-order Connected Components

The post-order processing functions are similar to pre-order processing functions. How-

ever, instead of inserting workitems to the data structure they are sent over the network to

a remote rank.

In CC (Listing 15.1), vcomponent state is initialized to v for each vertex with the excep-

tion of the source vertices. For source vertices, vcomponent is initialized to ∞ and initial

workitems are generated for sources (not to the neighbors of sources). See Algorithm 28 for

details.
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Algorithm 28 The initial workitem generation for post-order CC.
Initialize :

1: for Vertex v: V in parallel do
2: haslowernbr← false
3: for Edge e: out edges(v) do
4: Vertex u = target(e);
5: if u < v then
6: haslowernbr← true
7: break
8: end if
9: end for

10: if haslowernbr == false then
11: vcomponent[v]← ∞

12: WorkItem generated(v, v);
13: outset.push(generated);
14: end if
15: end for

15.3. Split-order Connected Components

The state update and new work generation functions for CC are given in Listing 15.2

and Listing 15.3. The component state update is performed in Listing 15.2 and state change

is notified to successors in the Directed Acyclic Graph (DAG) in Listing 15.3.

LISTING 15.2. State update function for CC
1 typedef std::tuple<Vertex, Component> WorkItem;
2 struct state_update_cc_pf {
3 void operator()(const WorkItem& wi, int tid, buckets& outset) {
4 Vertex v = std::get<0>(wi);
5 Component component = std::get<1>(wi);
6 if (CAS(&vcomponent[v], component)) {
7 if (component == vcomponent[v])
8 outset.push(wi, tid);
9 }

10 }
11 };

LISTING 15.3. New work generation function for CC
1 struct new_work_gen_cc_pf {
2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex v = std::get<0>(wi);
4 Component component = std::get<1>(wi);
5 if (component == vcomponent[v]) {
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6 set<Vertex> adjacencies;
7 bool haslowernbr = false;
8 for_each(Edge e : out_edges(v)) {
9 Vertex u = target(e);

10 if (u > component) {
11 adjacencies.insert(u);
12 }else if(u < component) {
13 // v has a lower neighbor
14 haslowernbr = true;
15 break;
16 }
17 }

19 if (!haslowernbr) {
20 for_each(Vertex w : adjacencies) {
21 WorkItem generated(w, component);
22 Send(generated, tid);
23 }
24 }
25 }
26 }
27 };

15.4. Orderings

We evaluate the performance of CC for the following orderings:

(1) <level→<ch→<ch→<ch

(2) <level→<ch→<ch→<djcc

(3) <ch→<ch→<ch→<level

The definition of <level is the same as in Listing 13.4. The ordering <djcc orders workitems

by the component id. Such ordering helps algorithm to converge quickly since the algo-

rithm uses global vertex identifiers as its priorities.

15.5. Experimental Evaluations

15.5.1. Processing Function Execution. We experimentally evaluated the performance

of different processing function execution configurations for <level→<ch→<ch→<ch. These

experiments were carried out on a Cray XC system that has 2 Broadwell 22-core Intel Xeon

processors. Our experiments only used up to 16 cores to uniformly double the problem
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FIGURE 15.1. A comparison of pre-order, post-order and split-order execu-
tion configurations for CC.

size and to double the number of processors in weak scaling. Each node consists of 128 GB

DDR4-2400 memory. We used an MPI+PThread, distributed shared-memory runtime. The

MPI implementation is Cray MPICH (version 7.4.4). The input is Graph500 [104] graphs

from scale 21–32.

The results are shown in Figure 15.1. As per the results, the pre-order and post-order

configurations show poor performance that is not scalable in distributed execution.

15.5.2. Weak Scaling. For weak scaling, we used the same graph input we used for

previous graph applications (See Section 13.5.2).

The weak scaling results for algorithms are given in Figure 15.2. In addition to the

EAGM orderings discussed above, we also included results from PowerGraph, CC algo-

rithm on Graph500 input (The first plot in Figure 15.2). As explained in Section 14.5.2,

PowerGraph uses Gather-Apply-Scatter (GAS) primitives to implement CC algorithm. As

can be seen in the plots, the PowerGraph version of the CC algorithm was not scalable in

distributed execution and was running out of memory.

Overall, the thread-level ordering (<ch→<ch→<ch→<level) shows better performance

across all graphs. The global level ordering shows competitive performance to thread-

level ordering for RMAT-1 and RMAT-2 graphs. However, for ER graphs the performance

difference between thread-level ordering and global level ordering is more visible. The

ordering <level→<ch→<ch→<djcc does not reduce much work over <level→<ch→<ch→
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FIGURE 15.2. Weak scaling results for CC orderings.

<ch and also increases the ordering time. Therefore, we do not see much benefit from

<level→<ch→<ch→<djcc.

To further compare the performance of EAGM algorithms, we ran experiments against

three other algorithm implementations. The weak scaling results for those experiments are

given in Figure 15.3. The PBGL2-SV is the active message version of Shiloach-Vishkin [123]

algorithm and PBGL2-CC is the CC implementation of Algorithm 3 on Parallel Boost Graph

Library, version 2 (Parallel BGLv2). As per the plot in Figure 15.3, EAGM global level

ordering outperformed all other algorithms in distributed execution for both graph inputs.
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FIGURE 15.3. Weak scaling result comparison for CC.

15.5.3. Strong Scaling. Strong scaling experiments were carried out on a Cray XC30

supercomputer. Each node in the system has two Intel Xeon processors and each pro-

cessor has 12 CPUs (cores). Each node has 64 GB of DDR3 RAM. The system uses Aries

interconnect.

Figure 15.4 shows the strong scaling speed-up results for CC orderings. As can be

seen for RMAT1 graphs, the global level ordering shows sound speed-up until about 768

cores, but afterward, the speedup decreases due to synchronization overhead. The globally

asynchronous, but thread local, ordering shows more parallelism even at 6144 cores. Both

RMAT1 and ER graphs show similar performance trends. Thread local ordering shows

better speedup in both cases.
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FIGURE 15.4. Strong scaling results for CC orderings. Plots show the rela-
tive speed-up. The fastest sequential algorithm is shown on the plot with
the timing.
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16

Maximal Independent Set

This chapter implements the Extended Abstract Graph Machine (EAGM) version of Max-

imal Independent Set (MIS) algorithm described in Chapter 8. We evaluate the perform-

ance of different processing function execution configurations and their strong and weak

scaling performance for different graph inputs.

16.1. Pre-order Maximal Independent Set

The pre-order processing function for MIS is given in Listing 16.1. A workitem for

MIS is defined as an edge (source vertex and destination vertex) and the source vertex

state (Line 1). The MISState datatype says whether a vertex is in FIX0, FIX1 or UN-

FIX state. These states are maintained in vmis against every vertex. If the source ver-

tex is in FIX1 state, the destination vertex is moved to FIX0 state and all of its succes-

sors are notified (Line 8). In addition to vertex MIS state, every vertex maintains a state

to track the number of FIX0 predecessors it processes (lower fixed neighbors). The

lower neighbors is initialized to keep the total number of predecessor for a vertex.

When the lower fixed neighbors count is equal to lower neighbors for a given

vertex, its state is moved to FIX1 (Line 20) and its successors are notified of its state change.

LISTING 16.1. State update function for MIS
1 typedef std::tuple<Vertex, Vertex, Component> WorkItem;
2 struct mis_pf {
3 void operator()(const WorkItem& wi, int tid, buckets& outset) {
4 Vertex dest_vertex = std::get<0>(wi);
5 Vertex source_vertex = std::get<1>(wi);
6 MISState source_state = std::get<2>(wi);
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7 if (source_state == MIS_FIX1) {
8 if (CAS(&vmis[dest_vertex], MIS_UNFIX, MIS_FIX0)) {
9 for_each(Edge e : out_edges(v)) {

10 Vertex u = target(e);
11 if (u > dest_vertex) {
12 WorkItem wi(u, v, vmis[v]);
13 outset.push(w, tid);
14 }
15 }
16 }else {
17 expected = lower_fixed_neighbors[dest_vertex];
18 newval = oldexpected + 1;
19 if(CAS(&lower_fixed_neighbors[dest_vertex], expected, newval))

{
20 if (newval == lower_neighbors[dest_vertex]) {
21 vmis[dest_vertex] = MIS_FIX1;
22 for_each(Edge e : out_edges(v)) {
23 Vertex u = target(e);
24 if (u > dest_vertex) {
25 WorkItem wi(u, v, vmis[v]);
26 outset.push(w, tid);
27 }
28 }
29 }
30 }
31 }
32 }
33 }
34 };

The vmis is initialized to UNFIX for all the vertices, except for source vertices. Source

vertex states are initialized to FIX1. The routine to generate initial workitems is the same as

Algorithm 27, but with added logic to update vmis for source vertices (See Algorithm 29,

Line 14).
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Algorithm 29 The initial workitem generation for pre-order MIS.
Initialize vmis :

1: for Vertex v: V in parallel do
2: haslowernbr← false
3: Set:adjacencies
4: for Edge e: out edges(v) do
5: Vertex u = target(e);
6: if u < v then
7: haslowernbr← true
8: break
9: else

10: adjacencies.insert(u)
11: end if
12: end for
13: if haslowernbr == false then
14: vmis[v]← FIX1
15: for Vertex w : adjacencies do
16: WorkItem generated(w, v);
17: outset.push(generated);
18: end for
19: end if
20: end for

16.2. Post-order Maximal Independent Set

In post-order execution, every vertex state is set to UNFIX except for the sources.

Source vertex states are set to FIX1 and workitems are generated for the sources (not to

the neighbors of source vertices).

16.3. Split-order Maximal Independent Set

The state update function for MIS (Listing 16.2) updates the vertex state to FIX0 if the

source vertex state is FIX1 (Line 7). If the source vertex state is FIX0, the state update

function updates lower fixed neighbors (Line 13). When source vertex is in FIX1, the

incoming workitem is directly pushed into the data structure. However, the FIX0 workitem

is only pushed to the data structure if all predecessors are in FIX0 state. The πgen function

for MIS (Listing 16.3) generates workitems to propagate states.

LISTING 16.2. State update function for MIS
1 struct state_update_mis_pf {
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2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex dest_vertex = std::get<0>(wi);
4 Vertex source_vertex = std::get<1>(wi);
5 MISState source_state = std::get<2>(wi);
6 if (source_state == MIS_FIX1) {
7 if (CAS(&vmis[dest_vertex], MIS_UNFIX, MIS_FIX0)) {
8 outset.push(wi, tid);
9 }

10 }else {
11 expected = lower_fixed_neighbors[dest_vertex];
12 newval = oldexpected + 1;
13 if(CAS(&lower_fixed_neighbors[dest_vertex], expected,

newval)) {
14 if (newval == lower_neighbors[dest_vertex]) {
15 vmis[dest_vertex] = MIS_FIX1;
16 outset.push(wi, tid);
17 }
18 }
19 }
20 }
21 };

LISTING 16.3. New work generation function for MIS
1 struct new_work_gen_mis_pf {
2 void operator()(const WorkItem& wi, int tid, buckets& outset) {
3 Vertex v = std::get<0>(wi);
4 for_each(Edge e : out_edges(v)) {
5 Vertex u = target(e);
6 if (u > dest_vertex) {
7 WorkItem wi(u, v, vmis[v]);
8 outset.push(w, tid);
9 }

10 }
11 }
12 };

16.4. Orderings

We evaluate the performance of MIS for the following orderings:

(1) <ch→<ch→<ch→<ch

(2) <level→<ch→<ch→<ch

(3) <stlevel→<ch→<ch→<ch
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(4) <ch→<ch→<ch→<level

The first ordering represents an asynchronous version of the MIS algorithm. Unlike the

other graph applications discussed previously, FIX algorithm is a label setting algorithm

even without any ordering (e.g., Single-Source Shortest Paths (SSSP) is label correcting).

Therefore, the amount of messages that are generated by the algorithm are constant with

any ordering. However, ordering can help to reduce the amount computations (See Sec-

tion 8.3 for details).

The second ordering globally synchronizes execution after processing a level. The level

is calculated as the topological distance from a source vertex in the Directed Acyclic Graph

(DAG). The definition of <level is previously discussed (See Listing 13.4). Third ordering is

similar to second ordering, but, <stlevel first orders work based on the state of the workitem

and then on the level.

The definition of <stlevel is given in Listing 16.4. Note that FIX1 has a smaller state

value than FIX0. The objective of this ordering is to propagate FIX1 workitems faster than

FIX0 workitems. Then, we can eliminate some of the computations we have to do for FIX0

workitems.

LISTING 16.4. The definition of <stlevel

1 template<int stindex, int levelindex>
2 struct stlevel {
3 public:
4 stlevel(){}

6 template <typename T>
7 bool operator()(T i, T j) {
8 if (std::get<stindex>(i) , std::get<stindex>(j))
9 return true;

10 else
11 return (std::get<levelindex>(i) , std::get<levelindex>(j));
12 }
13 };

The last ordering creates equivalence classes based on the level. However, these are

created at the thread level. Its definition was discussed in Listing 13.4.

235



www.manaraa.com

��

���

����

� � � � �� �� �� ��
�

��
�

��
�

��
��

��
��

�� �� �� �� �� �� �� �� �� �� �� ��

�
��
�

�
��
�

�����

��������������������

��������� ���������� �����������

FIGURE 16.1. A comparison of pre-order, post-order and split-order execu-
tion configurations for MIS.

16.5. Experimental Evaluations

16.5.1. Processing Function Execution. We experimentally evaluated the performance

of different processing function execution configurations for <level→<ch→<ch→<ch. These

experiments were carried out on a Cray XC system that has 2 Broadwell 22-core Intel Xeon

processors. Our experiments only used up to 16 cores to uniformly double the problem

size and to double the number of processors in weak scaling. Each node consisted of 128

GB DDR4-2400 memory. We used an MPI+PThread, distributed shared-memory runtime.

The MPI implementation was Cray MPICH (version 7.4.4). The input was Graph500 [104]

graphs from scale 21–32.

The results are shown in Figure 16.1. As per the results, the pre-order and post-order

configurations showed poor performance that is not scalable in distributed execution. Both

pre-order and post-order executions generated new work in a single function. Therefore,

the contention on the data structure is quite significant compared to split-order.

16.5.2. Weak Scaling. For weak scaling, we used the same graph input that we used

for previous graph applications (i.e., RMAT-1, RMAT-2, and ER graphs). The RMAT-

1 graphs also included a comparison between Parallel Boost Graph Library, version 2

(Parallel BGLv2) FIX algorithm and Parallel BGLv2 Luby algorithms.
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FIGURE 16.2. Weak scaling results for MIS orderings.

Weak scaling results for MIS experiments are given in Figure 16.2. For RMAT-1 graphs,

EAGM algorithms outperformed Parallel BGLv2 algorithms. For 64 and 128, the asynchro-

nous ordering performed poorly compared to other orderings for all graph types. At scales

27 and 28, the chaotic ordering performs more atomic operations in updating

lower fixed neighbors, than other orderings. For other EAGM algorithms, ordering

helped to keep the number of atomic operations minimum. Hence, we do not see fluctua-

tions as in the asynchronous algorithm at scale 27 and 28. We see that <ch→<ch→<ch→
<level scales well at high scales because this ordering does not incorporate synchronization

overhead.
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FIGURE 16.3. Weak scaling result comparison for MIS orderings.

We also compared the performance of the above-mentioned orderings with Comb-

BLAS [20] FilteredMIS implementation. As mentioned earlier, we were unable to run

CombBLAS in the scale for previous weak scaling experiments (i.e., Figure 16.2). Fig-

ure 16.3 shows the comparison between CombBLAS and EAGM orderings. The EAGM

algorithms are several times faster than CombBLAS 50% edge filtered execution and also

0% edge filtered graphs.
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FIGURE 16.4. Strong scaling results for MIS orderings. Plots show the rel-
ative speed-up. The fastest sequential algorithm is shown on the plot with
the timing.

16.5.3. Strong Scaling. Strong scaling experiments were carried out on a Cray XC30

supercomputer. Each node in the system had two Intel Xeon processors and each proces-

sor has 12 CPUs (cores). Each node had 64 GB of DDR3 RAM. The system used Aries

interconnect.

Strong scaling speed-up results for MIS variations are shown in Figure 16.4. As we

increased the number of parallel threads, the “thread local” ordering speed-up outper-

formed other orderings. The chaotic ordered algorithm showed almost the same speed-up

results as the thread local ordering. However, for several cases, thread local ordering was

slightly faster as it was able to reduce the number of computations performed.
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17

Conclusion

The Abstract Graph Machine (AGM) model expresses a graph algorithm as a processing

function and an ordering. The ordering is specified as a strict weak ordering relation. The

algorithm starts by executing the processing function with an initial workitem set. When

executing a processing function more workitems can get generated. The work units gener-

ated by the processing function are ordered according to the strict weak ordering relation.

The strict weak ordering relation creates equivalence classes and work units in an equiv-

alence class can be executed in parallel. However, execution of work units in different

equivalence classes must be ordered.

The AGM model generalizes existing parallel graph processing paradigms like

∆-Stepping , K-Level Asynchronous (KLA). These existing parallel graph algorithms (e.g.,

Single-Source Shortest Paths (SSSP) algorithms), are different only because of the way they

order work. We showed that by introducing new orderings we can generate different par-

allel graph algorithms. New orderings can be introduced either by incorporating new or-

derings relations on workitems or else by introducing new ordering attributes to workitems.

The AGM model is further extended to explore spatial orderings of a given architec-

ture. The extended model orders work temporally as well as spatially. The spatial ordering

decides how much synchronization cost we need to pay. When an ordering is specified for

a global spatial level, after processing every equivalence class we need to execute a global

barrier. However, if the ordering is local to a thread or to a process, then we spend less
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time on synchronization. We showed that by changing spatial orderings we can generate

more efficient parallel graph algorithms.

We showed that new asynchronous algorithms we developed for Connected Compo-

nents (CC), Maximal Independent Set (MIS) and Triangle Counting (TC) are scalable and

execute faster compared to extended shared-memory parallel algorithms. Those new algo-

rithms are modeled using the AGM framework and new orderings were applied. All those

algorithm variations were implemented in the same framework and experimented results

showed that the ordered algorithms outperform algorithms without ordering. In addition

to those AGM algorithms, we also extend two of Luby’s seminal algorithms for distributed

execution and used that as a baseline to compare the performance of AGM algorithms.

If an AGM is executing an algorithm in a label correcting manner with chaotic order-

ing, then further orderings will help to reduce the redundant work. Hence, it reduces

the number of messages exchanged over the network. Breadth First Search (BFS), SSSP,

CC are few examples. However, if an AGM is executing an algorithm in a label setting

manner with chaotic ordering, then ordering helps to reduce the number of computations.

Correctly defined orderings help label-correcting AGMs to converge faster by eliminating

redundant work. Therefore, the performance difference between chaotic ordered execu-

tion and ordered execution for label correcting AGMs is higher compared to label setting

algorithms. The benefit of ordering is clearly visible for label setting algorithms when they

are executed on fewer ranks, but when executing on a larger number of nodes, the benefit

of avoiding computation is not significant due to the overhead of distributed synchroniza-

tion and message communication.

The AGM model is implemented as a graph processing framework on top of a light-

weight Message Passing Interface (MPI) wrapper. AGM is an abstract model and map-

ping AGM model to a parallel hardware can be done in several ways. One of the main

choices we had to make was how to place the processing function within the framework.

We showed that fundamentally there are two ways to map processing function into an

implementation; they are 1. pre-order, 2. post-order. We showed that contention is one
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of the main factors that affect the performance of processing function execution configura-

tion. We showed that post-order reduce the contention (especially in distributed execution)

since it divides work among multiple ranks.

We came up with a new processing function execution configuration, that gives better

performance than pre-order and post-order configurations. The new configuration (split-

order) executes state update before ordering and new work generation after ordering. For

label correcting algorithms the split-order further prunes work. For label setting algo-

rithms, the split-order configuration reduces the contention on the data structure.

One of the most important parts of an implementation of the AGM model is the data

structure that holds workitems. We experimented multiple data structures to hold equiv-

alence classes. Two most important aspects we needed to address for a candidate data

structure are 1. contention, and, 2. lookup time. Data structures with fast lookups (e.g.,

Binary Search Tree (BST)) tend to perform unsafe operations (e.g., tree balancing) while

doing insertions and deletions (in a multi-threaded environment). Therefore, we need

extra concurrency handling to assure those operations leave the data structure in a con-

sistent state. Because of the extra concurrency handling, data structures with fast lookups

show poor performance in a multi-threaded environment. Further, concurrent data struc-

tures that avoid re-balancing (e.g., SkipList) shows poor performance because of the high

contention. Even though linked lists have a linear lookup time, they show better perform-

ance with concurrent threads because of the reduced contention. Further, the partitioning

scheme we came up, showed the best performance since, it minimizes the contention, in-

sertion time and partitioning time.

The AGM framework is extended to incorporate functionalities of an Extended Ab-

stract Graph Machine (EAGM). The heart of the EAGM implementation is the data struc-

ture that holds workitems. The EAGM data structure is nested and maintains equivalence

classes for different spatial orderings. We statically optimized EAGM orderings by treating

CHAOTIC ORDER as a special ordering. Those optimizations help to bypass nested spatial

levels with CHAOTIC ORDER.
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We evaluated the performance of AGMs with several synthetic graphs and real-word

graphs. Results showed that EAGM algorithms performed better than existing parallel

algorithms. In most cases, the Erdos-Reyi graphs performed better with globally synchro-

nizing orderings and power-law graphs showed sound performance with EAGM algo-

rithms. For high diameter graphs, global asynchronous algorithms outperformed global

synchronous algorithms because of the reduced overhead of synchronization.
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[6] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the maxi-

mal independent set problem. Journal of algorithms, 7(4):567–583, 1986.

[7] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Patric: A parallel algorithm for counting

triangles in massive networks. In Proceedings of the 22nd ACM international conference on Information &

Knowledge Management, pages 529–538. ACM, 2013.

[8] Baruch Awerbuch and Yossi Shiloach. New connectivity and msf algorithms for shuffle-exchange net-

work and pram. IEEE Transactions on Computers, 100(10):1258–1263, 1987.
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[22] Ümit V Çatalyürek, John Feo, Assefaw H Gebremedhin, Mahantesh Halappanavar, and Alex Pothen.

Graph coloring algorithms for multi-core and massively multithreaded architectures. Parallel Computing,

38(10):576–594, 2012.

[23] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive model for graph min-

ing. In SDM, volume 4, pages 442–446. SIAM, 2004.

[24] Francis Y Chin, John Lam, and I-Ngo Chen. Efficient parallel algorithms for some graph problems.

Communications of the ACM, 25(9):659–665, 1982.

245



www.manaraa.com

[25] Avery Ching. Scaling apache giraph to a trillion edges. Facebook Engineering blog, page 25, 2013.

[26] Ka Wong Chong and Tak Wah Lam. Finding connected components in o (log n log log n) time on the

erew pram. Journal of Algorithms, 18(3):378–402, 1995.

[27] Alok Choudhary and Rajeev Thakur. Evaluation of connected component labeling algorithms on shared

and distributed memory multiprocessors. In Parallel Processing Symposium, 1992. Proceedings., Sixth In-

ternational, pages 362–365. IEEE, 1992.

[28] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering, 11(4):29–

41, 2009.

[29] Guojing Cong, George Almasi, and Vijay Saraswat. Fast pgas implementation of distributed graph al-

gorithms. In Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–11. IEEE Computer Society, 2010.

[30] Stephen A Cook. A taxonomy of problems with fast parallel algorithms. Information and control, 64(1):2–

22, 1985.

[31] Thomas H Cormen. Introduction to algorithms. MIT press, second edition, 2009.

[32] Andreas Crauser, Kurt Mehlhorn, Ulrich Meyer, and Peter Sanders. A Parallelization of Dijkstra’s Short-

est Path Algorithm. In Mathematical Foundations of Computer Science 1998, pages 722–731. Springer, 1998.

[33] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos, Ramesh

Subramonian, and Thorsten Von Eicken. Logp: Towards a realistic model of parallel computation. In

ACM Sigplan Notices, volume 28, pages 1–12. ACM, 1993.

[34] Edsger W Dijkstra. A Note on Two Problems in Connexion With Graphs. Numerische mathematik,

1(1):269–271, 1959.

[35] Niels Doekemeijer and Ana Lucia Varbanescu. A survey of parallel graph processing frameworks. Delft

University of Technology, 2014.

[36] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden thematic layers in the

world wide web. Proceedings of the national academy of sciences, 99(9):5825–5829, 2002.

[37] Nicholas Edmonds, Jeremiah Willcock, T Hoefler, and A Lumsdaine. Design of a large-scale hybrid-

parallel graph library. In International Conference on High Performance Computing, Student Research Sympo-

sium, Goa, India, 2010.

[38] Nicholas Edmonds, Jeremiah Willcock, and Andrew Lumsdaine. Expressing graph algorithms using

generalized active messages. In Proceedings of the 27th international ACM conference on International con-

ference on supercomputing, pages 283–292. ACM, 2013.

[39] Nick Edmonds, Alex Breuer, Douglas Gregor, and Andrew Lumsdaine. Single-source shortest paths

with the parallel boost graph library. In The Ninth DIMACS Implementation Challenge: The Shortest Path

Problem, Piscataway, NJ, November 2006.

246



www.manaraa.com

[40] Nick Edmonds, Alex Breuer, Douglas Gregor, and Andrew Lumsdaine. Single-Source Shortest Paths

with The Parallel Boost Graph Library. The Ninth DIMACS Implementation Challenge: The Shortest Path

Problem, Piscataway, NJ, pages 219–248, 2006.

[41] Benedikt Elser and Alberto Montresor. An evaluation study of bigdata frameworks for graph processing.

In Big Data, 2013 IEEE International Conference on, pages 60–67. IEEE, 2013.
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Skills Summary
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in-memory graph storages, Cloud Systems, High performance computing, Service Oriented Ar-
chitecture, Application Security, Fault Tolerance, Monitoring, Distributed Systems, Messaging
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• Software Engineering: Agile/Scrum, test driven development (TDD), unit testing, integration
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• Open-Source Contributions: Apache Axis2 (committer), Apache Rampart (committer),
Apache WSS4J, and Apache Airavata (committer & Project Management Committee).
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Indiana University Bloomington, Indiana, USA.
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• Advisor : Professor Andrew Lumsdaine
• Thesis : Abstract Graph Machine(AGM) : Modeling Orderings in Distributed-Memory
Parallel Asynchronous Graph Algorithms – AGM represents a distributed-memory
parallel graph algorithm as a processing function and an ordering. The ordering is
specified as a strict weak ordering. The model is further extended to explore orderings
at spatial memory levels in a given architecture. The model and the extended model is
implemented using MPI and available here.
• Major : Computer Science (Systems)
• Minor : Logic

Indiana University Bloomington, Indiana, USA.
Master in Computer Science (GPA - 3.932/4.000) Aug ’15
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• Best student candidate paper at IEEE HPEC 2017.
• The most outstanding contributor (WSO2, 2012).
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• International Mathematical Olympiad (Taejon, Korea, 2000).
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FAST Search & Transfer (Microsoft Subsidiary) Norway
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An active developer for FAST enterprise search engine.
• Researched and developed a SQL interface to query unstructured data from index storage.
• Involved in parsing the Abstract Syntax Tree (AST) of a SQL query and implementing
necessary operations to retrieve indexed data.
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• Involved in porting Java search engine implementation to C#.
• Played a main role in recruiting, mentioning and managing a team of 3-5, played the
Scrum Master role.

Millennium Information Technologies R & D Sri Lanka
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An active back-end developer for a telecom billing and rating engine.
• Designed, prototyped and implemented a distributed Fault tolerance system for telecom
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Publications (selected)
1. Kanewala, Thejaka Amila, Zalewski, M., & Lumsdaine, A. (2018, June). Distributed, Shared-

Memory Parallel Triangle Counting. In Proceedings of the Platform for Advanced Scientific
Computing Conference. ACM.

2. Kanewala, Thejaka, MarcinZalewski, andAndrewLumsdaine. "Parallel AsynchronousDistributed-
Memory Maximal Independent Set Algorithm with Work Ordering." 2017 IEEE 24th International
Conference on High Performance Computing (HiPC). IEEE, 2017.

3. Best Student Candidate Paper: Kanewala, Thejaka, Marcin Zalewski, and Andrew Lumsdaine.
"Distributed-memory fast maximal independent set." High Performance Extreme Computing
Conference (HPEC), 2017 IEEE. IEEE, 2017.

4. Kanewala, Thejaka Amila, Marcin Zalewski, and Andrew Lumsdaine. "Families of Graph Algo-
rithms: SSSP Case Study." European Conference on Parallel Processing. Springer, Cham, 2017.

5. Firoz, J. S., Kanewala, Thejaka Amila, Zalewski, M., Barnas, M., & Lumsdaine, A. (2018, Septem-
ber). ”Synchronization-Avoiding Graph Algorithms.” 2018 IEEE 25th International Conference
on High Performance Computing (HiPC). IEEE, 2018 (Accepted for publication).

6. Firoz, J. S., Kanewala, Thejaka Amila, Zalewski, M., Barnas, M., & Lumsdaine, A. (2016, June).
Context Matters: Distributed Graph Algorithms and Runtime Systems: A Case Study of Dis-
tributed Graph Traversals. In Proceedings of the Platform for Advanced Scientific Computing
Conference (p. 12). ACM.

7. Firoz, J. S., Thejaka Amila Kanewala, Marcin Zalewski, Martina Barnas, and Andrew Lumsdaine.
“Importance of Runtime Considerations in Performance Engineering of Large-Scale Distributed
Graph Algorithms.” In 1stWorkshop on Performance Engineering for Large Scale Graph Analytics
at EuroPar, August 2015. Springer.

8. Zalewski, Marcin, Thejaka Amila Kanewala, Jesun Sahariar Firoz, and Andrew Lumsdaine.
"Distributed control: priority scheduling for single source shortest pathswithout synchronization."
In Proceedings of the Fourth Workshop on Irregular Applications: Architectures and Algorithms,
pp. 17-24. IEEE Press, 2014.

9. Kanewala, Thejaka Amila, Suresh Marru, Jim Basney, and Marlon Pierce. "A Credential Store
for Multi-Tenant Science Gateways." In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, pp. 445-454. IEEE, 2014.

10. Basney, Jim, Thejaka Amila Kanewala, Jeff Gaynor, Suresh Marru, Rion Dooley, and Joe Stubbs.
"Integrating Science Gateways with XSEDE Security: A Survey of Credential Management Ap-
proaches." (2014).

11. Pierce, Marlon, Suresh Marru, Thejaka Amila Kanewala, Lahiru Gunathilake, Raminder Singh,
Saminda Wijeratne, Chathuri Wimalasena et al. "Apache Airavata: Design and Directions of a
Science Gateway Framework." In Science Gateways (IWSG), 2014 6th International Workshop on,
pp. 48-54. IEEE, 2014.



www.manaraa.com

12. Thejaka Amila Kanewala, and S. Jayasena. "Persistent data structure library for C++ applica-
tions." In Parallel Distributed and Grid Computing (PDGC), 2010 1st International Conference on,
pp. 356-361. IEEE, 2010.

13. [Poster] Firoz, J. S., Thejaka Amila Kanewala, Zalewski M., Barnas M., and Lumsdaine A.
"POSTER: Distributed Control: The Benefits of Eliminating Global Synchronization via Effective
Scheduling." In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 441-442. ACM, 2017.

14. Kanewala, Thejaka Amila, Marcin Zalewski, andAndrewLumsdaine. “Abstract GraphMachine.”
arXiv preprint arXiv:1604.04772 (2016).


	Abstract
	Contents
	List of Figures
	List of Acronyms
	Chapter 1. Introduction
	1.1. Background

	Chapter 2. Related Work
	2.1. Graph Processing Frameworks
	2.2. Parallel Graph Algorithms
	2.3. Spatial Characteristics

	Chapter 3. Abstract Graph Machine
	3.1. Model Primitives
	3.2. Termination & Correctness
	3.3. Breadth First Search in AGM
	3.4. Summary

	Chapter 4. Extended Abstract Graph Machine
	4.1. Memory Hierarchy
	4.2. Data Distribution
	4.3. Spatial Ordering
	4.4. Summary

	Chapter 5. Families of Graph Algorithms: SSSP Case Study
	5.1. Introduction
	5.2. SSSP Algorithms in AGM
	5.3. SSSP EAGMs
	5.4. Experiments & Results
	5.5. Summary

	Chapter 6. Priority Based Connected Components
	6.1. The Problem
	6.2. The Asynchronous Algorithm
	6.3. Ordering
	6.4. Experiments & Results
	6.5. Connected Components in AGM
	6.6. Summary

	Chapter 7. Luby's Maximal Independent Set
	7.1. Introduction
	7.2. Luby's Algorithms
	7.3. Distributed Memory Parallel Luby Algorithms
	7.4. Experiments & Results
	7.5. Summary

	Chapter 8. FIX MIS
	8.1. Introduction
	8.2. FIX Algorithm
	8.3. Ordering in FIX
	8.4. Implementation & Experiments
	8.5. Results
	8.6. MIS in AGM
	8.7. Summary

	Chapter 9. Orderings in Triangle Counting
	9.1. Introduction
	9.2. Triangle Counting
	9.3. Distributed, Shared-Memory Triangle Counting
	9.4. Blocking and Grouping Vertices
	9.5. Degree based Partitioning
	9.6. Results
	9.7. Summary

	Chapter 10. Runtime API for AGM
	10.1. The Runtime
	10.2. Summary

	Chapter 11. AGM Graph Processing Framework
	11.1. Implementation of AGM Concepts
	11.2. Processing Function Placement
	11.3. Split Order Processing
	11.4. Work Statistics
	11.5. Temporal Ordering
	11.6. Data Structure for Equivalence Class
	11.7. AGM Framework Usage
	11.8. Summary

	Chapter 12. EAGM Graph Processing Framework
	12.1. Spatial Ordering Implementation
	12.2. EAGM Framework Usage
	12.3. Optimizations
	12.4. More Usecases
	12.5. Summary

	Chapter 13. Breadth First Search
	13.1. Pre-order BFS
	13.2. Post-order BFS
	13.3. Split-order BFS
	13.4. Orderings
	13.5. Experimental Evaluations

	Chapter 14. Single Source Shortest Paths
	14.1. Pre-order SSSP
	14.2. Post-order SSSP
	14.3. Split-order SSSP
	14.4. Orderings
	14.5. Experimental Evaluations

	Chapter 15. Connected Components
	15.1. Pre-order Connected Components
	15.2. Post-order Connected Components
	15.3. Split-order Connected Components
	15.4. Orderings
	15.5. Experimental Evaluations

	Chapter 16. Maximal Independent Set
	16.1. Pre-order Maximal Independent Set
	16.2. Post-order Maximal Independent Set
	16.3. Split-order Maximal Independent Set
	16.4. Orderings
	16.5. Experimental Evaluations

	Chapter 17. Conclusion
	Bibliography

